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PREFACE

This manual describes and tells how to use the mathematical time-sharing programs
available with the Series 6000 and 600 information processing systems. The programs
are listed alphabetically in the Table of Contents.

The writeup about each program includes the purpose of the program; the language in
which the program is written; the method of approach, if applicable; instructions for its
use; restrictions of the program, if any; and sample problems and their solution. In the
sample solutions, all information that the user types is underlined.

The instructions in this manual assume that the programs are available in the user master
catalog LIBRARY, and are accessible with READ or EXECUTE permission. In the sample
solution printouts the programs had already been accessed using the GET command, and/
or copied onto the current file using the OLD or LIB command.

Time-sharing programs for statistics and other classifications are also available.
Individual manuals are published for these categories as follows:

Series 6000/600 Time-Sharing Applications Library Guide Volume II - Statistics,
Order No. DA44

Series 6000/600 Time-Sharing Applications Library Guide Volume III - Industry,
Order No. DA45
The Industry manual is organized into sections by type as follows:
BF - Business and Finance
MS -~ Management Science and Optimization
EN - Engineering

GP - Geometric and Plotting
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PREFACE (Cont.)

ED - Education and Tutorial
DE - Demonstration
UM - Utility and Miscellaneous
Each section is paginated with the 2-letter identifier that is shown above.
A complete listing of the programs in the library is available by listing the LIBRARY

program CATALOG. A copy of this program follows the Table of Contents for your
information.

This document describes programs that originated from a variety
of sources, such as users and the Honeywell field organization.
The programs and documentation are made available in the general
form and degree of completeness in which they were received.
Honeywell Information Systems Inc., therefore, neither guarantees
the accuracy of the programs nor assumes support responsibility.
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4SQRS

AMPBX

ARCTAN
BESL
BICOF

BROWN

CLCINT
CLPLY
COMP1
COMP2
COMP3
DETE
DOMEIG
DVALG

EIG1

EIGSR

ERRF
ERRINV
EUALG

FDRVUL

FINT
FRESNL

GAHER

TABLE OF CONTENTS

Writes Integers as the Sum of Squares of Four Integers

Solves First-Order Differential Equations by the Adams-
Moulton Method

Determines Arctangent in Radians of Y/X
Evaluates Bessel Functions
Calculates Binomial Coefficients

Solution of Simultaneous Non-Linear Systems by Brown's
Method

Evaluates Integrals Using Simpson's Rule
Evaluates Real Polynomials at Real Arguments
Evaluates Real Hyperbolic Trigometric Functions
Performs Complex Multiplication and Division
Evaluates Various Functions for Complex Argument
Evaluates Real Determinants

Calculates Dominant Eigenvalues

Finds the Quotient of Two Polynomials

Calculates Eigenvalues and Vectors of a Real Symmetric
Matrix

Calculates Eigenvalues and Vectors of a Real Symmetric
Matrix

Evaluates the Error Function
Evaluates the Inverse Error Function
Finds the Greatest Common Divisor of Two Polynomials

Differentiation of a Tabulated Function, Unequally Spaced
Points

Evaluates Fourier Integrals
Evaluates Fresnel Integrals

Performs Gauss-Hermite Quadrature
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MA-2
MA-6
MA-T

MA-9

MA-10
MA-12
MA-14
MA-15
MA-17
MA-19
MA-24
MA-26

MA-28

MA-30

MA-32
MA-35
MA-36

MA-38

MA-40
MA -42
MA-44

MA-46
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GALA
GAMF
GAUSSN
GAUSSQ
GCDN
GJSIMEQ
GSEIDEL

HDRVEB

JACELF

LINEQ
LINSR

MTALG
MTINV
MTMPY
NCOATES
NUMINT
ORTHP
PLMLT
POLRTS
POLYC
POLYV
QUADEQ
RKPBX

ROMBINT

TABLE OF CONTENTS (Cont.)

Performs Gauss-Laguerre Quadrature

Evaluates the Gamma Function

Evaluates Definite Double or Triple Integrals
Performs Gaussian Quadrature

Finds the Greatest Common Divisor of n Integers
Solves Linear Equations by Gauss-Jordan Method
Solves Linear Equations by Gauss-Scidel Method

Differentiation of a Tabulated Function, Equally Spaced
Points

Evaluates Jacobian Elliptic Functions

Solves Simultaneous Linear Equations by Gaussian
Elimination

Solves Simultaneous Linear Equations by Gaussian
Elimihation

Finds the Product of Two Polynomials

Inverts a Matrix by Pivot Operations

Finds the Product of Two Matrices

Performs Newton-Coates Quadrature

Numerical Integration (Gaussian Quadrature)

Evaluates Orthogonal Polynomials

Reconstructs Polynomial Coefficients from its Real Roots
Solves Real Polynomials by Bairstow's Method
Reconstructs Polynomial Coefficients from its Roots
Evaluates Real Polynomials at a Complex Argument

Solves Quadratic Equations

Runge Kutta Solution for First Order Differential Equations

Performs Romberg Integration
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MA-64

MA-66
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MA-T1
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ROOTER
SECANT
SIME QN
SOLN
SPEIG1
STIRLING
SYMEIG
TMFCEV
TNT1
TNT2
TNT2A
ZCOP
ZCOP2
ZEROES
ZORP

ZORP2

TABLE OF CONTENTS (Cont.)

Solves Real Polynomials by Bairstow's Method

Solves Simultaneous Non-Linear Systems by the Secant Method
Solves Systems of Linear Equations by Matrix Inversion

Finds a Zero of an Arbitrary Function

Solves Special Eigenvalue Problems

Calculates Factorials of Positive Integers

Finds Eigenvalues of a Symmetric Matrix by Jacobi Method
Evaluates Damped and/or Undamped Fourier Series

Performs Single Lagrangian Interpolation

Performs Double Lagrangian Interpolation

Performs Variable Double Linear Interpolation

Finds the Roots of a Complex Polynomial by Newton's Method
Finds the Roots of a Complex Polynomial by Newton's Method
Finds Zeroes, Maximum, and Minimums of an Arbitrary Function
Finds the Roots of a Real Polynomial by Newton's Method

Finds the Roots of a Real Polynomial by Newton's Method
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MA-104
MA-106
MA-108
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MA-123
MA-125
MA-127
MA-128
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CATALOG OF SERIES 6000/600 T-S LIBRARY PROGRAMS

FORMAT INDICATOR:
FIRST LETTER FOLLOWING LETTERS

F FORTRAN-SQURCE P (@R BLANK) PROGRAM

@ FORTRAN=-@BJECT S SUBROUTINEC(S)

C CARDIN F FUNCTIONCS)

B BASIC-SOURCE P-S PROGRAM WITH EXTRACTABLE SUBROUTINE
E EDITORCASCII)

SUBJECTS DOCUMENTATION MANUAL

MATHEMATICS (MA) cesoscesssses o RDER # DA43
INTEGRATIGN
DIFFERENTIATIONs, DIFFERENTIAL EQ-
INTERPOLATION
POLYNOMIALS
LINEAR EQUATIONS
MATRICES
NON-LINEAR EQUATIONS
SPECIAL FUNCTION EVALUATION
LOGIC AND NUMBER THEBRY
STATISTICS (ST) cessesacesscoesJRDER # DALY
CURVE FITTING AND REGRESSION
ANALYSIS @F VARIANCE
PROBABILITY DISTRIBUTIONS
CONFIDENCE LIMITS
HYPOTHESIS TESTING
DESCRIPTIVE STATISTICS
RANDOM NUMBER GENERATION
MISCELLANEQUS STATISTICS
BUSINESS AND FINANCE (BF) cesessssncesss ORDER # DA4S
MANAGEMENT SCIENCE AND OPTIMIZATION (MS)
LINEAR PROGRAMMING
INTEGER PROGRAMING
NON-LINEAR QPTIMIZATION
NETWORK ANALYSIS
FORECASTING
SIMULATION
ENGINEERING C(EN)
GEGMETRIC AND PL@TTING (GP)
EDUCATION AND TUTORIAL CED)
DEMONSTRATION (DE)
UTILITY AND MISCELLANEQUS (UMD

THE DOCUMENTATION FOR THESE PREGRAMS 1S AVAILABLE IN THREE MANUALS:
SEE QRDER # DA43 FOR PROGRAMS IN MATHEMATICS

ORDER # DA44 FOR PROGRAMS IN STATISTICS

ORDER # DA45 FOR PROGRAMS IN ALL OTHER CATEGORIES.

SUBROBUTINES THAT ARE CALLED BY A PROGRAM AND MUST BE EXECUTED WITH IT
ARE LISTED IN BRACKETS AT THE END @F THE DESCRIPTION.

THESE PROGRAMS HAVE ALL BEEN REVIEWED AND TESTED BUT N@ RESPONSIBILITY
CAN BE ASSUMED-.

viii # DA43



AR R Rk ok ROk kM A= - MATHEMA T CS sk o ook ok s e e ok ok s o o o o 35 0 oo ok ok o ok ok ok ook ok ol o ok ke ok ok o

kR INTEGRATI QN ki

CLCINT FF INTEGRATION BY SIMPSON®S RULE

FINT FF EVALUATE FOURIER INTEGRALS BY FILON®'S FORMULA
GAHER FF CGAUSS-HERMITE QUADRATURE

GAL. A FF GAUSS~LAGUERRE QUADRATURE

GAUS SN FF EVALUATE DEFINITE DOUBLE OR TRIPLE INTEGRALS
GAUSSE FF GAUSSIAN QUADRATURE

NCOATES FP-S NEWT@N-COATES QUADRATURE

NUMINT B GAUSSIAN QUADRATURE

ROMBINT FP=S ROMBERG INTEGRATIGN

#w*DIFFERENTIATIONs DIFFERENTIAL EQokk%k

AMPBX FS ADAMS-MOUL TGN FOR 1ST-@RDER DIFF. EGONS [RKPBX)
FDRVUL FF DIFFERENTIATE TABULATED FUNCTIONs, UNEQUAL SPACING
HDRVEB FF DIFFERENTIATE TABULATED FUNCTIONs, EQUAL SPACING
RKPBX FS RUNGE~KUTTA FOR 1ST-@RDER DIFF. EGNS

w¥ok INTERPOLATI @ Notkok sk

INTI FF SINGLE LAGRANGIAN INTERPOLATION [TLUI]

™T2 FF DOUBLE LAGRANGIAN INTERPOLATION [TLUL]

TNT2A FF VARIABLE DOUBLE LINEAR INTERPOLATION C[TLUI)
*ExPOLYNOMI AL Sk

BICOF FS CALCULATE BINGMIAL COEFFICIENTS

CLPLY FF EVALUATE REAL POLY AT REAL ARGUMENT

DVAL G FS POLYNOMIAL DIVISION

EUAL G FS GeCoDo OF TWQ POLYNOMIALS [ DVALG]

MTAL G FS MULTIPLY POLYNBMIALS

PLMLT Fs REAL POLY COEFFICIENTS RECONSTRUCTED FROM REAL ROATS
POLRTS FP SOLUTION QF POLY BY BAIRSTOWS METHOD

POLYC FS REAL POLY COEFFICIENTS RECONSTRUCTED FROM COMPLEX ROOTS
PALYV FS EVALUATE REAL POLY AT CBMPLEX ARGUMENT

QUADE® B SOLUTION T@ QUADRATIC EQUATIONS

ROBTER B SOLUTION @F POLY BY BAIRSTOWS METH@D

zcer FP ROOTS OF POLYNOMIAL WITH COMPLEX COEFF.

ZCoP2 Fs RGOTS OF POLYNGMIAL WITH COMPLEX COEF. (ZCOP2)
ZARP FP R@OTS OF REAL POLY

ZORP2 FS ROOTS OF REAL POLY

*kklL INEAR EQUATIONSu#ok*

GJSIMER FS SOLVE LINEAR SYSTEMS BY GAUSS~JORDAN

GSEIDEL FP-S SOLVE LINEAR SYSTEMS BY GAUSS~-SEIDEL

LINEQ FS SOLVE LINEAR SYSTEMS BY GAUSSIAN ELIMINATION

LINSR FP SOLVE LINEAR SYSTEMS BY GAUSSIAN ELIMINATION (LINEQ]
SIMEGN B SOLVE LINEAR SYSTEMS BY MATRIX INVERSIGN
*xAkMATRICES#k%

DETE FF EVALUATE DETERMINANT OF REAL MATRIX

DBMEL G FP-5 DOMINANT EIGENVALUES OF REAL MATRIX

EIG1 FSs EIGENVALUES OF SYM MATRIX BY JACBBI METH@D

EIGSR FP EIGENVALUES AND VECTORS OF REAL SYM. MATRIX [EIG1)
MTINV Fs MATRIX INVERSION BY PIV@TS

MTMPY FS MATRIX MULTIPLICATI@N

SPEIGI FS SPECIAL EIGEN PROBLEMS (EIG13]

SYMEIG FP EIGENVALUES OF SYM MATRIX BY JACOBI METHGD

kX ENON-L INEAR EQUATIONS* %%

BROWN Fs SOLN OF SIMULTANEGUS SYSTEMS BY BROWN METHOD
SECANT FS SOLN @F SIMULTANEGUS SYSTEMS BY SECANT METHGD [MTINV]
SOLN FF ZERO OF AN ARBITRARY FUNCTIGN

ZEROQES B ZERG»MAX>MIN @F FUNCTION
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*¥*xxSPECTAL FUNCTION EVALUATI 0Nk

ARCTAN
BESL
ComMP 1
CampP2
ComMpP3
ERRF
ERRINV
FRESNL
GAMF
JACELF
BRTHF
STIRLING
TMFCEV

FF
Fs
FF
FS
FS
FF
FF
Fs
FF
FS
FF
FP-S
B

ARCTANGENT IN RADIANS OF Y/X

BESSEL FUNCTION (GAMF]

EVALUATES REAL HYPERBOLIC TRIG FUNCTIOGNS

COMPLEX MULT. AND DIVISION

EVALUATES VARIOUS FUNCTIONS FOR COMPLEX ARGUMENT [COMP2]
ERROR FUNCTION

INVERSE ERROR FUNCTIGN

EVALUATES FRESNAL INTEGKALS

GAMMA FUNCTIGN

EVALUATES JACOBIAN ELLIPTIC FUNCTIONS SNs CNs DN
EVALUATE ORTHOGONAL POLYNOMIALS

N FACT@RIAL BY STIRLINGS APPROXIMATION

EVALUATE DAMPED @k UNDAMFED FOURIER SERIES

*%kL@GIC AND NUMBER THEBRY*k#x

ASURS
GCDN

B
FS

WRITES INTEGERS AS SUM 8F SQUARES @F FOUR INTEGERS
GeCeDo @BF N INTEGERS

ok o A ke ke okok ok Rk ke kok ok ko ST = STATI ST C S % 3k ok s sk s o e e e o o e sk e o she e ook o ol ke ok kO ok ok e dof sk e ok ook

*k%xCURVE FITTING AND REGRESSION##*%

CFIT
CURFIT
FORIR
FEBURIER
LINEFIT
LINREG
LSPCFP
LSamMm
MREG!
MULFIT
ORPOL
POLFIT
POLFT
SMLRP
SMLRrRPOBJ

FP
B
FP
B
FS
B
FP
FS
FF
B
FP
B
FP
FP
@

LEAST SQRSe POLY. WITH RESTRAINTS

FITS SIX DIFFERENT CURVES BY LEAST SORS

LEAST SQUARES ESTIMATE @F FINITE FOURIER SERIES MODEL
COEFF OF FOURIER SERIES T@ APPR@X A FUNCTIGN

LEAST SQRS LINE

LST-SORSs BY LINEAR, EXP@NENTIAL, OR POWER FUNCTION
LEAST SQRS POLYNGMIAL FIT

GENERALIZED POLY FIT BY LEAST SORS OR MIN-MAX
MULTIPLE LINEAR REGRESSION

MULTIPLE LINEAR FIT WITH TRANSFORMATIONS

LEAST SORS FIT WITH @RTHOG@NAL POLYS

LEAST SORS POLYNG@MIAL FIT

LEAST SQRS POLYNOMIAL FIT

MULTIPLE LINEAR REGRESSION

OBJECT FILE FOR SMLRP

EEANALY SIS OF VARIANC E% %

ANO VA
ANVA1
ANVA3
ANVAS
KRUWAL
ONEWAY
STATI13
STAT1 4
STAT1IS
STAT16
STATI18
STAT33

FP
FP
FP
FP
FP

ToToCooww

ONE OR TWO WAY ANALYSIS @F VARIANCE

ONEWAY ANALYSIS BF VARIANCE

THREE WAY ANALYSIS OF VARIANCE

MULTIPLE VARIANCE ANALYSIS

KRUSKAL-WALLIS 2-WAY VARIANCE (XINGAM]

ONEWAY ANALYSIS @F VARIANCE

ANALYSIS OF VARIANCE TABLE», 1-WAY RANDOM DESIGN
ANALYSIS @F VARIANCE TABLE FOR RANDOMIZED BLOCK DESIGN
ANALYSIS OF VARIANCE TABLE FOR SIMPLE LATIN-SG DESIGN
ANALYSIS OF VARIANCE TABLEs GRAECO-LATIN SQUARE DESIGN
ANALYSIS @F VARIANCE TABLE, YOUDEN SGUARE DESIGN
ANALYSIS OF VARIANCE TABLEs 1-WAY RANDOM DESIGN

w4k PROBABILITY DISTRIBUTIONSH*%

ANPF

BETA

BINDIS
EXPLIM
FOIS@N
PROBC
PRO VAR
TDIST
XINGAM

FF
FF
B
B
FF
FF
B
FF
FF

NG RMAL PROBABILITY FUNCTION [ERRF]

BETA DISTRIBUTION

BINGMIAL PR@BABILITIES

EXPONENTIAL DISTRIBUTIONS

PBISSON DISTRIBUTIOGN FUNCTION

PROBABLITIES OF COMBINATIONS OF RANDOM VARIABLES
NORMAL AND T-DISTRIBUTION

T-DISTRIBUTIGN [BETAJ

INCOMPLETE GAMA FUNCTION
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*%kCONFIDENCE LIMITSH*x*

BAYES B DIFFERENCE @F MEANS IN NON-EQUAL VARIANCE

BICONF B CONF. LIMITS F@R POPULATI@N PROPORTION (BINOMIAL)
BINOM FP BINOMIAL PROBABILITIES AND CONFIDENCE BANDS
COLINR B CONFIDENCE LIMITS @ON LINEAR REGRESSIONS

CONBIN B CONF. LIMITS FOR PQPULATIOGN PROPORTIGN (NORMAL)
CONDIF B DIFFERENCE OF MEANS IN EQUAL VARIANCE

CONL IM B CONF. LIMITS FBR A SAMPLE MEAN

STATOS B CONFIDENCE INTERVAL FOR MEAN BY SIGN TEST

STATO6 B CONFIDENCE LIMITSsWILCOXON SIGNED RANK SUM TEST
*kkHYPATHESIS TESTINGH®x%

BITEST B TEST @F BINOMIAL PROPORTIONS

CHISQOR FS CHI-SQUARE CALCULATIGNS

CORREL FP CONTINGENCY COEFFICIENT [(XINGAM]

CORRL2 FP CORRELATION COEFFICIENT [TDISTsBETA)

KOKQ FP KOLMOGOROV~-SMIRNGV TW@ SAMPLE TEST [(XINGAM]
SEVPRO B CHI=SQUARE

STATO1 B MEAN> STD @F MEANs .. » T=RATIO®»2 GROUPS, PAIRED
STATO2 B MEANS, VARIANCES, A D T-RATI@ 2 GROUPSs UNPAIRED DATA
STATO4 B CHI-SQUARE AND PROBABILITIES, 2X2 TABLES

STATOS B COMPARES TW@ GROUPS OF DATA USING THE MEDIAN TEST
STATO9 B COMPARE 2 DATA GROUPSs MANN-WHITNEY 2-SAMPLE RANK TEST
STATI11 B SPEARMAN RANK CORRELATION C@EF. FOR 2 SERIES OF DATA
STATI12 B COMPUTES CORRELATION MATRIX F@R N SERIES OF DATA
TAU FP KENDALL-RANK CORRELATION

%% DESCRIFTIVE STATISTICS®%*

MANDSD B FIND MEAN» VARIANCEs STD

STAT FP FIND SEVERAL STATISTICS FOR SAMPLE DATA [ANFF3ERRF]
STATAN B FIND VARIQUS STATISTICAL MEASURES

TESTUD B SAMFLE STATISTICS

UNISTA B DESCRIPTION OF UNI-VARIANT DATA

*%*RANDAM NUMBER GENERATIQON*#*x*

FLAT oF UNIFORM RANDOM NUMBER GENERATOR

FLATSBRC C CARDIN SQURCE FILE F@OR FLAT

RANDX FF RANDOM #°S, UNIF@RM DIST. BETWEEN O AND 1

RNDNRM FF CALCULATES NORMAL RANDZM NUM. [FLAT)

UNIFM oOF UNIFORM RANDOM NUMBER GENERATOR

UNIFMSOR C CARDIN SQURCE FILE FOR UNIFM

URAN gF UNIFORM RANDOM NUMBER GENERAT@R

URANSORC C CARDIN SQURCE FILE FOR URAN

MNOR1 FF NORMAL RANDOM NUMBERS, VARIABLE MEANs STD [RANDX)
XNGRM FF NORMAL RANDGM NUMBERS, MEAN 0O, STD t. [RANDX]
*k*¥MISCELLANEGUS STATISTICS*%%

FACTAN FP FACTOR ANALYSIS

STADES E EXPLANATION @F COLINR,CURFIT,MULFIT, UNISTA

Aot g kR ok Rk ok Aok kK ok kR R BF ~ ~BUSINESS AND FINANQC Ekk o ok o o o o o s e ook ok ok 3 o e ok ok sk ok o o ok ok

ANNUIT B ANNUITIES:LOANS, MORTGAGES

BLDGCBST B ANALYZE BUILDING C@STS

DEPREC B CALCULATES DEPRECIATION BY FOUR METH@DS

SAVING B SAVINGS PLAN CALCULATIONS

RETURN B COMPUTES ANNUAL RETURNS F@R A SECURITY FRGM ANNUAL DATA
TRUINT B INTEREST RATE CALCULATIONS

AR AR FOR R AOR K AR R AR XM S = -MANAGEMENT SCIENCE AND QP TIMIZATI N ko ko i ook ook ok ke
wkxl. INEAR PROGRAMMIN Gk Ak

LINPRO B LINEAR PROGKRAMMING
LNPKROG FP LINEAR PROGRAMMING
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ok INTEGER FPROGRAMMING# %%

INTO1 FP ZIONTS® M@DIFICATION QF BALAS'® ZERE-OGNE ALGORITHM
INTLP FP GOMORY®*S PURE AND MIXED INTEGER PROGRAMMING
*EANAN-LINEAR QPTIMIZATION® k%

DAVID@N B DAVIDON'S UNCONSTRAINED QPTIMIZATION

L@GIC3 FP UNCONSTRAINED OPTIMIZATIGN

MAXOPT FP UNCONSTRAINED OPTIMIZATION

whENETWORK ANALYSI SHdx

CPM FP CRITICAL PATH METHOD

KILTER FP 'OUT OF KILTER® ALGORITHM (MINIMUM COST CIRCULATIOGNY
MAXFLOW FP MAX IMUM FLOW THRU NETWORK

PERT B SIMPLE ANALYSIS OGF A PERT NETWORK

SHORTEST FP SHORTEST PATH - MIN SPANNING TREE

kK FPRECASTIN Gk

TCAST FP TIME SERIES F@RECASTING [ TCASTI13:TCAST2]
TCASTI1 %] QVERLAY MQDULE @F TCAST

TCASTZ2 2 QOVERLAY MODULE OF TCAST

SMBATH FS TRIPLE SMOQTHING OF A TIME SERIES

Rk STMULATI QN kR

GASPDATA E DATA FILE FOR SAMPLE PROGRAM GASPSAMP

GASPIIA FS "GASP® SIMULATION SYSTEM

GASPSAMP  FP SAMPLE PROGRAM FOR GASPIIA [ GASPI1A:GASPDATAIL

A e 8 K K K K KR R AR R EN= = ENGTNEER T N G s ook s oo ok o ok o ¥ ok o 0ok sk o o 8 o Ok o 0k 0K o ok o o oK

ACNET FP FREQUENCY RESPONSE @F A LINEAR CIRCUIT

BEMDES B STEEL BEAM SELECTION

GCVsizZ B GAS CONTROL VALVE COEFF.

LCVSIC B LIQUID CONTROL VALVE CQEFF.

LPFILT B DESIGN LOW PASS FILTERS

MNLNET FP GENERAL STEADY-STATE CIRCUIT ANALYSIS

BTTO B PTTO CYCLE @F ENGINE

PVT FP FINDS MELAR VOLUME @F A GAS GIVEN TEMPERATURE AND PRES.
SCVsS1izZ B STEAM CONTROL VALVE COEFF.

SECAP B STEEL SECTION CAPACITIES

e e Ak ROR OR RO R R R ok ok ok GP e = GEGMETRIC AND PLOTTI N Goesk ok ok e o e o o s e o e afe e ok sk o e s e o o o ofe o
CIRCLE B DIVIDES A CIRCLE INT@ N EQUAL PARTS

FLOT FS PLOTS UP T2 9 CURVES SIMULTANEGUSLY

PLRTTO B SIMULTANEGUSLY PLOTS 1 T 6 FUNCTIONS

POLFLO FP PLBTS EONS IN POLAR COORDINATES

SPHERE B SOLVES ANY SPHERICAL TRIANGLE

TRIANG B SOLVES FOR ALL PARTS @F ANY TRIANGLE

TWO PLO B SIMULTANEQUSLY PLOTS 2 FUNCTI@NS

XYPLOT B PLOTS SINGLE-VALVED FUNCTIGNS

Aok ook dokolok ok fokokokokok Rk Rk ED- - EDUCATION AND TUTOR T AL e skok sk ok ok i ok sk s sk o o ofe ok ook o o ok ok ok ok
DRI VES %} DRIVER F@R EXPER, A COMPUTER ASSISTED INST. LANG.

EXPERN E EXPER TUTORIALS IN EXPER (N=1 T@ 5) [(PREPRS?DRIVES]
PREPRS 4] PREPROCESSOR FOR EXPER: A COMPUTER ASSISTED INST. LANG-.
Ao e e e e e ol e ke e ok s R ok ok DE = = DEM@NS TRAT T G IN sk sk ok sic e sk stz ok sl o 3b o 2 o ale 3 sk o s e 3k e e ok ofe e ofe e ok ofe ofe o o ke
BLKJAK B THE COMPUTER DEALS BLACKJACK

s 3 of o ok ok ok skofeok ok ok kR ok UM = = UTIL I TY AND MISCELL AN EQD U S %ok s ok sk o s s s 3 ok ok ok e o 3¢ o e o3 ok e o
CATALOG E CATALOG @F SERIES 6000/600 T/S LIBRARY (THIS FILED
CONVRT B CONVERTS MEASUREMENTS FROM ONE SCALE TO ANOGTHER

DBL S@ORT FS SORT TWO ARRAYS

SGLSORT FS SORT AN ARRAY

TLU1 FS TABLE SEARCH

TPLSORT FS SORT THREE ARRAYS

ok END OF CATALQGHxk
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4SQRS-1
4SQRS

This BASIC program writes integers as the sum of squares of four integers.

INSTRUCTIONS

Enter the integer to be partitioned following the "?'". The program will continue requesting
additional integer until STOP is entered.

SAMPLE PROBLEM

Partition the integers 12, -452, and 39.

SAMPLE SOLUTION

K*RUN

4SQRS

N A B C D
21

o0 2 2 2
7-452

0 0 -14 =16

239

o 1 1 6
2STOP

READY
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AMPBX-1

AMPBX

This FORTRAN subprogram contains two routines to integrate systems of first-order
ordinary differential equations by the fourth-order Adams-Moulton method.
INSTRUCTIONS
The two entries in this subprogram are:
CALL AMPBI1 (IND,DERIV, TEMP, X, DX, Y, F, N, ICOUNT, NITER, MTST)
CALL AMPB2 (IND,DERIV, TEMP, X, DX, Y, F, N, ICOUNT, NITER, MTST)
where,
e IND is defined as follows:
IND = O indicates the beginning of the integration.
IND = -1 indicates no adjustment of DX. It is the normal mode and IND
will be restored to this value every time the subprogram is

called.

IND

i
s

For AMPRB1 this indicates that DX be doubled before the next
integration step.

For AMPBZ2 this indicates that DX be halved before the next
integration step.

® DERIV is the name of the derivative routine which must be supplied by the user
(an external statement must be used to define DERIV - see sample problem),
containing the expressions for the first derivatives of the dependent variables.

¢ TEMP is the name of a single-dimensioned array containing at least 10* (N+1)
elements which must not be used for any other purpose while the integration is
being performed.

e X is the value of the independent variable.

e DX is the value of the independent increment.

® Y is the name of the single-dimensioned array containing the dependent variables.

e I is the name of the single-dimensioned array containing the dependent derivatives.

@ N is the number of dependent variables.

e ICOUNT is a counter of successive integration steps by the Adams-Moulton method.

e NITER is the number of iterations on the corrector values of the dependent variables.
For the normal Adams-Moulton integration, NITER must be set equal to zero.

® MTST is defined as follows:

MTST = 1 indicates truncation error is treated.

MTST = 0 indicates truncation error is disregarded.
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AMPBX-2

AMPB1 will compute the derivatives and store the functions and derivatives at each step of
the integration. AMPB2 will integrate to the next step. The values of the functions and de-
rivatives at the next step will be stored. However, the integration may be repeated with an
adjusted increment. The integration step will be made permanent only by calling AMPBI1.

The routine only performs the integration of the differential equations. Provision for output
termination of the integration, and adjustment of the increment must be done by the user,
Generally, the output and termination should be done between routine calls to AMPB1 and
AMPB2, and adjustment of the increment, if any, should be done after the routine call to
AMPB2.

2

If an adjustment to the increment is desired, it must be done by changing IND. DX may not
be adjusted directly by the user,

An approximation of the truncation errors will be stored in TEMP (2) - TEMP (N+1) upon
exit from AMPB2 provided ICOUNT =4,

RESTRICTION

The subprogram RKPBX must be used with this subprogram, as shown in the Sample Prob-
lem.

METHOD

For the method used, see reference below.

SAMPLE PROBLEM

Integrate the following system of equations:

ax

at ¥
ay

& - ax
4z

0 27

Fromt = 0 to t = 2 where the interval of integration (dt) is 0. 0625 and the initial conditions
of X, Y, and Z are:

X =0.0
Y = 2.0
Z =1.0

att = 0. Printt, X, Y, and Z for every integration step.

(In the following program, U(1) is used for X, U(2) is used for Y, and U(3) is used for Z.
The derivatives of X, Y, and 7 are referred to as F(1), ¥(2), and F(3), respectively.)

Hildebrand, F.B., Introduction to Numerical Analysis, McGraw-Hill, New York, 1956,
Section 6. 6. 1.
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SAMPLE SOLUTION

010 EXTERNAL DERIV

020 COMMON UC33,F(3)

030 DIMENSION TEMPC 40)

0 40 Te0.03 DT=0.06253 N=33 UC1)=0.03 U(2)=2,03 U(3»=1,.0
050 TF=2.03 IND=0

060 PRINT 1

070 1 FARMATC/8Xs 1HT» 13Xs 1HX» 13Xs 1HY» 13X 1HZ)

080 NITER=03 MTST=0

090 10 CALL AMPBICINDs DERIV, TEMP, ToDTs Us FoNo ICOUNTSNITER,MTST)
100 PRINT 15, T, U

110 15 FERMATCIH 4E14.6)

120 IF (T=TF) 205,100,100

130 20 CALL AMPB2(IND, DERI Vs, TEMP, Ts DTs Us FoNs ICOUNT,NITER,MTST)
1 40 GO Teé 10

150 100 STOP

155 END

160C DERIVATIVE EVALUATION SUBRBUTINE

170 SUBROQUTINE DERIV

180 COMMON UC3), F(3)

190 FC1)=UC2)3 F(2)=-4,0%UC1)Y3 F(3)=2.0%UC3)

200 RETURN

210 END

R EADY

* RUN *3 AMPBX3 RKPBX

T

Oe

0. 625000E-01
0. 125000E+00
0.187500E+00
0.250000E+ 00
0.312500E+00
0.375000E+00
0+ 437500E+00
0+ 500000E+00
0. 562500E+00
0.625000E+00
0. 687500E+00
0. 750000E+00
0.812500E+00
0.875000E+00
0+937500E+00
0. 100000E+01
0.106250E+01
0. 112500E+01
0« 11875S0E+01
0.125000E+01
0. 131250E+01
0+ 137500E+01
0. 143750E+01
0. 150000E+01

X

0.

0. 1246T4E+00
0.247403E+00
0.366272E+00
00479 426E+00
0« 58 509BE+ 00
0.681641E+00
0. 76 7546E+00
0.841475E+00
0.902272E+00
0.948990E+00
0.980899E+00
0.997501E+00
0.998537E+00
098399 1E+00
0.954090E+00
0.909301E+00
0+.850322E+00
0. 7780 74E+00
0+ 693684E+00
0« 598470E+00
004939 16E+00
0. 381654E+00
0.263437E+00
0+ 141108E+00

Y
0.200000E+01
0. 198440E+01
0. 193782E+01
0+ 186102E+01
0. 17551 7E+01
0+ 162193E+01
0. 14633BE+01
0.128199E+01
0. 10B060E+0O1
0.862350E+00
0. 630640E+00
0.389088E+00
0+ 141465E+00

=0+ 10836 7E+00
~0e356508E+00
=0+ 59908 5E+00
=0.832315E+00
=00 105256E+01
-0.125637E+01
=0 144058E+01
=0, 160232E+01
=0e 1 73904E+01
-0e 1B4863E+01
~0192938E+01
~0. 198001E+01

MA-4

z
0. 100000E+01
0 113315E+01
0.128402E+01
O 145499E+01
0. 164B72E+01
0. 1868B25E+01
0.211700E+01
0.239888E+01
0.271828E+01
0. 308022E+01
0. 349035E+01
0+ 395508E+01
0. 4481 T0E+01
0-507843E+01
0. 575462E+01
0. 65208 4E+01
0. 7T38908E+01
0.837293E+01
0.9487TTTE+01
0.107511E+02
0. 121825E+02
0. 138046E+02
0. 156427E+02
0.177255E+02
0. 200856E+02
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PROGRAM STOP AT

*®

0. 156250E+01
0.162500E+01
0. 1687S0E+01
0.175000E+01
0.181250E+01
O+ 187S00E+01
0.193750E+01
0.200000E+01

0¢165779E=01 «0.1999 T5E+01
=0.108211E+00 -0+ 198828E+01
=0e231312E+00 =04+ 194579E+01
=0+ 350804E+00 ~-0.187293E+01
=0+ 46 4821E+00 =0.177084E+01
=0+ 571585E+00 ~0.164113E+01
=0.669430E+00 ~0.148580E+01
=0.756828E+00 ~0.130728E+01

150

MA-5

0.227600E+02
0.257905E+02
0.292245E+02
0.331157E+02
0. 375250E+02
0. 42521 4E+ 02
0.481831E+02
0¢545986E+02

AMPBX-4
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ARCTAN

This FORTRAN subprogram determines an angle (ih radians) on the interval (-7, 7) whose
tangent is Y/X.

INSTRUCTIONS
The calling sequence for the entry ARCTAN is:
CALL ARCTAN(X,Y, ANGLE, ERROR).
where,
® X,Y and ANGLE are defined above.

® ERROR is an error flag; when the routine returns to the calling program, the
error will contain 1 if X = Y = 0. Otherwise, it will contain 0.

SAMPLE PROBLEM

Find the angle whose tangent is 1/1, -1/-1, and 2/-1.

SAMPLE SOLUTION

*LIST

10 PRINT 1

15 1 FORMATC'O X Y ARCTANCYZ X))
20 Y=13X=1

25 CALL ARCTANC(X»YsA»E)
30 IFCEY253s2

35 2 PRINT:"E"

40 STOP

45 3 PRINT 4-XsYsA

50 4 FORMATCIP3EL16.7)
55 X==13Y=~-1

60 CALL ARCTAN(XsY»AsE)
65 TF(EY2, 552

7O 5 PRINT 4sXsYsA

75 Y=2.

80 CALL ARCTAN(X:YsA5E)D
85 IF(EX2s6s52

90 6 PRINT 45 XsYsA

95 STOP3 END

READY

¥RUN %3 ARCTAN

X Y ARCTAN Y/ X)
1.0000000E+00 1.0000000E+00 7.8539816E-01
-1.0000000E+00 -1.0000000E+00 =~2.3561945E+00

-1.0000000E+00 2.0000000E+00 2.0344439E+00

PROGRAM STOP AT 95
*
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BESL

This FORTRAN subroutine computes the Bessel function, J, of the first kind, for a real
order and real argument.
INSTRUCTIONS
The calling sequence for the entry BESL is:
CALL BESL (IND, ORD, X, XJ)
where,
e IND determines the number of Bessel functions returned, as follows:
IND = 1, one answer is returned.
IND = 2, a set of Bessel functions is returned.
@ ORD is the order of the Bessel function and can be any real number.
® X,the argument, is any nonnegative real number.

e XJ is a single dimension array into which the results are stored.

RESTRICTION

The subprogram GAMF must be used with BESL, as shown in the Sample
Solution.

METHOD
If IND = 2, the values returned correspogd to Bessel functions of orders V to *N + V in
steps of 1, evaluated at X, where ORD = =N + V, N is an integer and V is a real number
not less than zero but less than 1. N and V are determined by the program.
XJ must be a dimension variable, i.e., XJ(M) where M is determined as follows:

HIND =1, M =1

If IND = 2, M must be at least [ TORD" | + 2
It is recommended that IND be interrogated after a call to BESL as a check on accumulator

overflow, because if this occurs IND is set to - IND and a return is made to the main pro-
gram.
o

A backward recurrence method is usedl.

1 Bessel Functions of Integer and Fractional Order, Handbook of Mathematical Functions.,
National Bureau of Standards.
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SAMPLE PROBLEM

Find:
74 ()

7,3

J (5, X=0, 1,2, 3

SAMPLE SOLUTION

10 DIMENSION XJ(10)
15 PRINT 2

20 FORMAT (** ORDER AR GUMENT FUNCTION")

25 IND=130RD=0.3 X=54

30 CALL BESL (IND,BRD» X XJ)

a0 PRINT 1,0RD, Xs XJC1)

50 ORD=1+3X=3.

60 CALL BESL (IND»@RDs X» XJ)

70 PRINT 1, BRDsXsXJC1)

s FORMAT (3E16.8)

80 IND=230RD=3) X=5.

85 CALL BESL CIND»ORD» Xs XJ)

90 D@ 3 I=ls4

52 Pai-}

93 3 PRINT 1,PsXsXJ(I)

95 STOP 3 END

READY

*RUN_ %3 BESL 3 GAMF

@RDER ARGUMENT FUNCTIBN

0. 0+50000000E+01 =0+177596 TBE+00
0+10000000E+01 0.30000000E+01 0.33905895E+00
0. 0.50000000E+01 =0+17759678E+00
0.10000000E+01 0+50000000E+01 =0.32757915E+00
0.20000000E+01 0.50000000E+01 0.46565115E=01
0+30000000E+01 0.50000000E+01 0.36483124E+00
PROGRAM STBP AT 95

A

MA-8
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BICOF-1

This FORTRAN subroutine generates a set of binomial coefficients.

INSTRUCTIONS
The calling sequence for the entry BICOF is:
CALL BICOF(I, N, COF)
where,
® I and N are indices indicating the range of coefficients.
e COF is the name of the coefficient array.
If T is less than N, COF will contain the Ithrough N coefficients. If Iis greater than N,

COF will contain the N through I coefficients. If I is equal to N, COF will contain the
Nth coefficient.

SAMPLE PROBLEM

Find the coefficients of (A + B)3 and (A + B)7. Find the last 3 coefficients of (A + B)B.

SAMPLE SOLUTION

10 DIMENSION COF(¢10)

20 CALL BICOF(0s3+COF)

25 PRINT 1,CCOF¢I)s1=1,s4)
30 CALL BICOF(0,7-COF)

35 PRINT 1-,CCOF(I)»1I=1,58)
40 CALL BICQ@F(3,5,COF)

50 PRINT 1,(¢COF(I1)51I=1,3)
60 | FORMAT(/8F6.2)

70 STOP3END

READY

*RUN *3BICOF

1.00 3.00 3.00 1.00

100 7.00 2100 35.00 35.00 21.00 7.00 1.00
10.00 5.00 1.00

PROGRAM ST@P AT 70
*
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BROWN

This FORTRAN subroutine solves a system of n simultaneous nonlinear equations in n un-
knowns using Brown's algorithm (Comm. ACM vol. 10 page 728). The algorithm is a
modification of Newton's method requiring no derivative evaluations.
INSTRUCTIONS
The subroutine is called as below

CALL BROWN (N, MAXIT, EPS, ISING, X, FUNCT)
where on input N is the number of equations, MAXIT is an upper bound on the number of
iterations, EPS is a small number used to test for convergence, and X is the vector of
initial guesses to the solution. FUNCT is the external subroutine supplied by the user.
BROWN calls FUNCT as below

CALL FUNCT ( X, FK, K )

When called FUNCT should evaluate the Kt‘h function at X (X is a vector) and return the
value in FK.

On exit from BROWN, the vector X is the solution of the system (or its best approximation)
and MAXIT is the actual number of iterations performed. ISING =0 if a Jacobian related
matrix was singular (the routine was ""blowing-up'’) or ISING = 1 if no such difficulty was
found.

Dimension statements limit N to be less than or equal to 20.

SAMPLE PROBLEM

Solve the system

(1--L ) (eZX

e
-e) + Sy - 2eX=0
411 i

1/2 sin (xy) —4%—-%}2~(—~: 0

One solution of which is (.5, TT ).
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SAMPLE SOLUTION

®LIST

0010 DIMENSIBN X(20)

0020 EXTERNAL FUNCT

0030 X(1)=.T3X(2)32.8

0040 MAXIT=50

0050 CALL BROWN(2,MAXIT»1E-4,ISINGs Xs FUNCT)

0060 PRINTI* ISING= *, ISING,* MAXIT= ",MAXIT

0070 PRINT:*"SOLUTION,» X(1),X(2)

0080 STOPSEND

0090 SUBROUTINE FUNCT(X,FK,K)

0100 DIMENSIBN X(20)

0110 GO T@ (1,2),K

0120 1| FK=2.71828183%(.920422528% (EXP(2%X(1)=1)=1)+X(2)/3.14159265
0121& =2.%X(1))

0130 RETURN

0140 2 FKsSaSINCXC(12%X(2))=X(2)/12:55663706-X(13/2
0150 RETURN

0160 END

READY

*RUN *3BROWN

ISING= 1 MAXIT= 7
SOLUTION 4:9999999E-01 3.1415926E+00

PRGGRAM STOP AT 80
*
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CLCINT

This FORTRAN function computes the integral
b
f f(x) dx

a

by the Trapezoidal Rule or Simpson's Rule.

INSTRUCTIONS

The calling sequence for the entry CLCINT is:
Y = CLCINT(IND, DX, FX, TEMP)

where,
@ Y is the value of the integral.

@ IND is defined as: IND
IND

0 Trapezoidal Rule
1 Simpson's Rule

i

e DX is defined as: DX
DX

0 When X = A
Integration Increment  When X # A.

o

@ FX is the integrand.

® TEMP is an array of dimension 5, which must not be used for any other purpose
while the integration is being performed.

METHOD

The first interval is always computed by Trapezoidal Rule.

If IND = 0, subsequent intervals are computed by Trapezoidal Rule. If IND = 1, subsequent
intervals are computed by Simpson's Rule (if the current and previous values of DX are equal,
otherwise, they are computed by Trapezoidal Rule). Assuming a constant DX, the net effect
of this procedure is: If N is odd, the integral consists of the Trapezoidal Rule integration
over the first interval and Simpson's Rule integration over the remaining N-1 intervals, If N
is even, the integral consists of Simpson's Rule integration over the N intervalsl.

SAMPLE PROBLEM

Evaluate by Simpson's Rule the integral of the function SIN(X), in the interval zero to 2x
radians using an increment DX = .01,

1 Hamming, R.W., Numerical Method for Scientists and Engineers, McGraw-Hill, New
York, 1962, Section 13. 2.
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SAMPLE SOLUTION

10 DIMENSION TEMP(5)

20 X=0.03DX=0.0

30 Y=CLCINT(C1,DXs SINCX)» TEMP)
40 D@ 10 J=1,628

50 A=J

60 X=A%x.01

70 10 Y=CLCINT(C1,.01,SINCX), TEMP)
80 PRINT 15, Y

90 1S FORMATC'O VALUE @F THE INTEGRAL ="', 1PE20.7)
100 STAP3 END

READY

* RUN *3CLCINT
VALUE @F THE INTEGRAL = 209 79569E-06

PROGRAM STOP AT 100

*
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CLPLY-1

This FORTRAN function evaluates a polynomial defined as the sum of powers of a single
real variable.

INSTRUCTIONS

The calling sequence for the entry CLPLY is:

Y=CLPLY(X,A,N)

where,
®
®
®

Y is the value of the polynomial.

X is the value of the independent variable.

A is the name of the coefficient array (stored constant term first).

N is the degree of the polynomial.

METHOD

The standard nesting process is used.

SAMPLE PROBLEM

Evaluate the following polynomial at X=1, 0:

2

3x° - x% 4 9% - 5

SAMPLE SOLUTION

10 DIMENSI@N A(6)

20 Al1)==5.0

30 A(2)=2.0

35 A(3)==1.0

40 A(4)=20,03A(5)80.0
45 AC6I=3.0

50 Y=CLPLY(1:sAs5)
55 PRINT 10sY

60 10 FORMAT(/26H VALUE OF THE POLYNOMIAL =,1PE20.7)
65 STAPSEND

READY

*RUN *3CLPLY

VALUE @F THE POLYNOMIAL = ~1.0000000E+00

PROGRAM ST@P AT 65

A&
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COMP1

This FORTRAN function evaluates the real functions: hyperbolic sine, hyperbolic cosine
hyperbolic tangent, arcsine, and arccosine. '

INSTRUCTIONS
The calling sequence for the entry COMP1 is:

Y = COMPI(IND, A)

where,
® Y is the value of the function.
IND = 1 real hyperbolic sine
IND = 2 real hyperbolic cosine

IND = 3 real hyperbolic tangent
IND = 4 real arcsine
IND = 5 real arccosine

oo

® A is the input argument, For IND = 1,2,3, A must be in radians. For IND =
4 and 5. Y will be returned as radians.

RESTRICTIONS

Hyperbolic sine, hyperbolic cosine: |A| must be less than 88,

Hyperbolic tangent: none.

Arcsine, arccosine: |A| must be less than or equal to 1.0,

METHOD

Evaluation of power series and use of exponential and square root functions, depending on

the range of the argument and the function desired.

SAMPLE PROBLEM

Find the hyperbolic sine, cosine, and tangent of the first five non-negative integers.
Find the angle whose sine is 0, 885235471,

Find the angle whose cosine is 0, 574338891,
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SAMPLE SOLUTION

*LIST

10
15
20
25
30
35
40
45
50
55
60
65
70
75

RE

*R

TH

TH

PRINT 1

1 FORMAT (0™ TXs X5 13Xs "SINHCX) 59X "COSHIX) "> IXs "TANHC X"/ /)

DG 2 I=1:5

A=1

PRINT 3,AsCOMP1C15A)sCOMP1(25A)>COMP1(35A)

2 CONTINUE

3 FORMATCIP4E16.7)

=,885235471

PRINT 4,A,COMP1 (4,A) )

4 FORMATC(OTHE ANGLE WHOSE SINE IS "»F10.65" IS "»F10:6)
=.5T74338891

PRINT SsA»>CUMPI(5:A)

S FORMAT ("OTHE ANGLE WHOSE COSINE IS "sF10.65" 15 "5F10.6)
ST@P3 END

ADY

UN #3COMP1

X SINHCXD CAOSHOXD TANHCX)

1+ 0000000E+00 1.1752012E+00 1.5430806E+00 7.6159415E-01
2.0000000E+00 3.6268604E+00 3.7621957E+00 9.6402758E~01
3.0000000E+00 1.0017875E+01 1.0067662E+01 9.9505475E-01
4.0000000E+00 2.7289917E+01 2.7308233E+01 9.9932930E-01
5.0000000E+00O 7. 4203210E+01 7+ 420994BE+01 9.9990920E~01

E ANGLE WHOSE SINE IS 0.885235 IS 1.087000

E ANGLE WHOSE COSINE IS 0574339 15 0959000

PRUGRAM STAP AT 75

*

MA-16
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COMP2

This FORTRAN subroutine evaluates a complex product or quotient.

INSTRUCTIONS

The calling sequence for this subprogram is:
CALL COMP2(IND, AR, AI, BR, BI, CR, CI)

Complex Multiplication

IND =1

AR is the real part of the multiplier

Al is the imaginary part of the multiplier
BR is the real part of the multiplicand

BI is the imaginary part of the multiplicand
CR is the real part of the product

CI is the imaginary part of the product

Complex Division
IND =2

AR is the real part of the dividend

Al is the imaginary part of the dividend
BR is the real part of the divisor

BI is the imaginary part of the divisor
CR is the real part of the quotient

CI is the imaginary part of the quotient

RESTRICTION

If BR=BI=0, the largest number possible is returned for the quotient CR and CI(IND = 2).
This number is approximately 1038

METHOD

For complex multiplication (IND = 1), the method is:

CR=AR*BR-AI*BI
CI =AR*BI +AI*BR

For complex division (IND = 2), the method is:

CR=(X2*X4+X1)/X3
CI =(X2-X1¥X4)/X3

where,

ABSF(BR)< ABSF(BI) Xl1= AI/BI
X2=-AR/BI
X4=-BR/BI X3=1, +X4*X4

ABSF(BR)= ABSF(BI) Xl1= AR/BR

X2= AI/BR
X4= BI/BR X3=1, +X4*X4
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COMP2-2

SAMPLE PROBLEM gq ?ﬁ{:}?

Multiply and divide the two complex numbers 2+2i and 1-4i

re
1
pe

Jdnetioup o joubowg xelgmios & esisnlsve enijucidue MASTHAOT aid

SAMPLE SOLUTION

2UMOITOURTZ N
10 IND=1 et orerworgdue 2idd 1ol eansupas yuiliss adT
20 AR=2.03A1=2,.0
ig g*;";_‘_ ;‘j 5 (1D AD 18 A8, 1A A, AUTRIMOD LIAD
50 20 CALL COMP2(IND»AR,Al1sBRsBI-CR,CI) et Pl T e ~
) PRINT 30, IND,CR,CI aoitsotlgiHuM xelgmoD
70 30 FORMAT("OINDa",15,10Xs"CR="5s1PE14655X,"C12"s1PE14.6) ,
80 IF CIND-2) 40,505 40 L= av
50 40 1ND=2
100 GB T@ 20 geifgiilu edi Yo Iveq lest odi ai FAA
110 50 STBPIEND wailgidtivor odi to dusg visnigsmi aif ai 1A
READY _bs;mi.{qiﬁvm sdd Yo deg lset adi el HE
brsotigitiuo odi Yo ey visaigsmi edd 2l 19
#RUN %3 COMP2 joubotq 26d? 1o Jueg isew odd & A
T jophotg ef? 1o dueqg vieaigemi edf &l 1D
IND= 1 CR=  1.000000E+01 Cl=z =-6.000000E+00
aniaivid zeigrsoD
IND= 2 CR= =-3.529412E~=01 Ci= 5.882353E~01

€= Ml

PROGRAM STOP AT 110
*

hashivib ot 1o t1sq Iset edi ai fA
brobivib ol 1o 31eg visnigsatt ot gl 1A
yoaivib ol 1o dusg Isox odd ai A8
aoaivib ol Yo Jusq vienizsmd adl 2l I8
inoitoun adl to ftsg [set ol al A0
tnaifoup o6 10 F18q vrsnigsmi odf el 10

AOITOIRTZ3R

(8 = QVIDID bas A2 dusidoup odi 101 bemtuist ai sidizeog yedraun jesyisl ol D=18=04 11

801 yleismixorgge 2i tedmun aidT

GOHTIM
cef boder edd (I = QU goidsoiigitiom xelgmos 104

1G* A~ A+ TA=50D
AG*1A+ 1E*HA= 10

2f hoddam add (8 = QUMD aolaivib xelgmos 107

BRI Kb X EX)=5D
XN\ (BRFIR-CK)= 1D

Lotsiw
IENIA =1¥ (d)ieda >(SE)HRHA
I\AA-=8X
=6X (F\AT-=p X

oy
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COMP3

This FORTRAN subroutine evaluates the complex functions:

exponential

square root

sine radian }
cosine { argument
modulus

logarithm (base e)
hyperbolic sine {radian }

hyperbolic cosine argument
natural logarithm of the gamma function

INSTRUCTIONS
The calling sequence for this subroutine is:

CALL COMP3(IND, AR, AI,CR,CI)

where,
e IND =1 Complex exponential
@ IND =2 Complex square root
e IND =3 Complex sine radian
e IND =4 Complex cosine {argument}

e IND =5 Modulus
® IND =6  Complex logarithm
® IND =7 Complex hyperbolic sine ‘radian
e IND =38 Complex hyperbolic cosine :argument}
® IND =9 Natural log of the complex gamma function
AR and AI are the real and imaginary parts of the input arguments and CR and CI are the
real and imaginary parts of the answer, except for the modulus routine where there is only

one answer. The answer is returned in CR; however, CI must be included in the calling
sequence,

RESTRICTION

The subprogram COMP2 must be used with this subroutine. For an example of this use,
see the Sample Problem.
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METHOD

The following procedures are used in COMP3.

Complex Exponentiation
When IND = 1, the method is:

CR=EXPF(AR)*COSF(AI)
CI =EXPF(AR)*SINF(AI)

where,

e The magnitude of AR must be less than or equal to 88; otherwise, if the argument
is negative, both results are set to zero. If the argument isépos,itive, the answer
returned is the largest number possible, approximately 103

® The magnitude of AI must be less than or equal to 227; otherwise, the answers,
CR and CI, are set to 0.

Complex Square Root

When IND = 2, the method is:

If AR=0. CR=X
CI =AI/(2.0*X)

If AR< 0. CR=ABSF(AI/(2. 0¥X))
CI =SIGNF(X, Al)

where,
e X=SQRTF((ABSF(AR)+CABS(AR,AI))/2.0)

and
e CABS indicates the modulus function.

Of the two roots, the root in the right-hand plane is veturned as the answer. For the special
case of a real, negative input, the returned root lies on the positive imaginary axis.
Complex Sine

When IND,= 3, the method is:

CR=SINF (AR)*COSH(AI)
CI =COSF(AR)*SINH(AI)

where,
® COSH and SINH are the hyperbolic cosine and sine functions.

® The magnitude of AR must be less than or equal to 227; otherwise, the answers,
CR and CI, are set to 0.

® The magnitude of AI must be less than or equal to 88; otherwise, the answers
returned are the largest numbers possible, approximately 1038,
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Complex Cosine
When IND = 4, the method is:

CR=COSF(AR)*COSH(AI)
CI =SINF (AR)* SINH(AI)

where,
® COSH and SINH are the hyperbolic cosine and sine functions.

® ABSF(AR) and ABSF(AI) are the same as for IND = 3,

Modulus
When IND = 5, the method is:
CR=ABSF(L)*SQRTF(1.0+(S/L)**2)

If ABSF(AR) < ABSF(AI) L=AI

S=AR
If ABSF(AR) = ABSF(AI) L=AR

S=Al

The value is returned in CR; CI is not used.

Complex Logarithm
When IND = 6, the method is:

CR=LOGF(C)
CI=ATANT (AI/AR

where, C is the modulus of the complex argument. The value of CI is chosen such that
T - <Cl=smw

In tlglg special case, where AR=AI=0, the answers returned are approximately

-109°,

Complex Hyperbolic Sine

When IND = 7, the method is:

CR=(EXPF(AR)*COSF(AI)-EXPF(-AR)*COSF(-AI))/2.
Cl =(EXPF(AR)*SINF(AI)-EXPF(-AR)*SINF(-AI))/2.

where,

e The magnitude of AR must be less than or equal to 88; otherwise, the
answers returned are the largest possible, approximately 1038,

@ The magnitude of Al must be less than or equal to 227; otherwise, the
answers, CR and CI, are set to 0.
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Complex Hyperbolic Cosine

When IND = 8, the method is:

CR=(EXPF(AR)*COSF(AD)+EXPF(-AR)*COSF(-AI))/2.
CI =(EXPF(AR)*SINF(AI)+EXPF(-AR)*SINF(-AI))/2.

Requirements for the magnitudes of AR and Al are the same as when IND = 7,

Natural Log of the Complex Gamma Function

When IND = 9, the method is as in the reference below. The requirements are:
® If AR=AI=0, CR and CI are set to 0.

@ If AR is a negative integer and Al=0, CR and CI are set to 0.

SAMPLE PROBLEM

Find the complex exponential, complex square root, complex sine, complex cosine, modulus,
complex logarithm, complex hyperbolic sine, complex hyperbolic cosine, and natural log of

the complex gamma function for the complex number, 1+1i.

Lanczos, C., "A Precision Approximation of the Gamma Function, ' Journal of SIAM,

Numerical Analysis, Series B, Volume 1, 1964,
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SAMPLE SOLUTION

10 IND=1

20 AR=1.03AI=1.0

30 20 IF C(IND-10)25,80.,25

40 25 CALL COMP3CIND»AR,AI-CR,CI)

50 IF _CIND=5) 40,60, 40

60 40 PRINT 45, IND,CR,CI

70 45 FORMAT("OIND=",15,10Xs"CR="51PE14+6,5X,"CIa", 1PE14.6)
80 GO T@ 50

90 60 PRINT 70, IND,CR

100 70 FORMAT("OIND=",15,10X,""CR="51PE14+¢6)
110 50 IND=IND+1

115 GO T@ 20

120 80 STOPSEND

READY

*RUN %3 COMP33COMP2

IND= i CR= 1.468694E+00 Cl= 2.287355E+00
IND= 2 CR= 1.098684E+00 CI= 4+550899E-01
IND= 3 CR=  1.298458E+00 Cl= 6.349639E~01
IND= 4 CR= B.337300E=-01 Cls -9.888977E-01
IND= S CR= 1.414214E+00

IND= 6 CR= 3.465736E-01 Cl= 7.853982E-01
IND= 7 CR=  6.349639E~01 Ci= 1.298458E+00
IND= 8 CR= B8.337300E-01 Cl= 9.888977E-01
IND= 9 CR= -6.509233E=01 Clms =-3.016404E-01

PRAGRAM STOP AT 120
*
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DETE

This FORTRAN function evaluates the determinant of a matrix of real elements.

INSTRUCTIONS
The calling sequence for the entry DETE is:

X = DETE (A, N, IDIM)

where,
® X is the value of the determinant
@ A is the name of the array of matrix elements. This matrix is altered during
the course of the evaluation.
® N is the order of the matrix.

® IDIM is the first dimension of the array A, i.e., A(IDIM, N).

METHOD

The solution is obtained by the Triangular methodl.

SAMPLE PROBLEM

Evaluate the determinant of the following matrix:

2 0. 1. -3.
4. 1. -2, 0.
-3. 4. 2. 5
0 1. 0. 1

1Scarborou\g;h, J.B., Numerical Mathematical Analysis, Sixth Edition,
The Johns Hopkins Press, Baltimore, Maryland, 1962.
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SAMPLE SOLUTION

010 DIMENSIBN A(25,4)

020 AC1,1)=2.08AC3,3)=2.0

030 A(251)=4.03A(352)=24.0

040 AC351)==3.03AC15,4)=-3.0

050 AC4,1)=003A(1s2)50+03AC4,3)=0.03A(254)20.0
060 A(252)=1.03AC4s2)=103AC1,3)=0+05AC4,4)=0.0
070 A(253)==-2.0

080 AC3,4)=5.0

090 X=DETE(A»4,25)

100 PRINT 10, X

110 10 FORMAT(/27H VALUE OF THE DETERMINANT =, 1PE20.7)
120 STOP

I Ca—

READY

*RUN #3DETE
VALUE @F THE DETERMINANT = ~2.6000000E+01

PROGRAM STOP AT 120
*
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DOMEIG

This I«:ORTRAN program calculates either the dominant or subdominant eigenvalue and the
eigenvector of a real, square matrix.

METHOD

The method used is the Power Method of Misus. If the matrix is nonsingular, has a dominant
eigenvalue, and hus N linearly-independent eigenvectors, the dominance of the eigenvalue can
be used to extract it and its eigenvector. If the eigenvector has multiplicity greater than one,
the eigenvector found is just one of the general family corresponding to the eigenvalue. To
find the subdominant eigenvalue the matrix is inverted and the inverse matrix will have re-
placed the original upon completion.

INSTRUCTIONS
To use this program enter data as requested.
DOMEIG can also be used as a subroutine. This is done by deleting lines 1 through 99.
The calling sequence for the entry DOMEIG is:
CALL DOMEIG (A, VI, N, EIGEN, DM, ITMAX)
where,

@ A is the name of a two dimensional array containing the N by N matrix whose
dominant or subdominant eigenvalue is to be found.

@ VI isthe name of a one dimensional array containing an initial guess of the eigen-
vector and containing the eigenvector upon completion.

@ N is the dimension of the matrix.

® EIGEN is the real variable in which the eigenvalue will be stored upon completion.

® DM is a variable specified by the user as a zero if the subdominant eigenvalue is
to be found. Otherwise, the dominant eigenvalue will be found. It indicates the

result of the search for the eigenvalue by returning with one of the following values:

0

subdominant eigenvalue is zero because matrix was singular.
1 - The dominant eigenvalue and eigenvector were found.
2 - ITMAX was exceeded and the eigenvalue was not found.

3 - The initial guess was an eigenvector and therefore, the eigenvalue found may
not be dominant or subdominant.

4 - The subdominant eigenvector and eigenvalue were found.
e ITMAX is the maximum number of iterations to be used in looking for the eigen-

value. It is typically in the order of 50 to 100. If the subroutine is called with
ITMAX zero, then ITMAX is set to 100 by the subroutine.
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NOTE:

If the subdominant eigenvalue is to be found, the original matrix is destroyed and the
inverse created in its place.

SAMPLE PROBLEM

Find the subdominant eigenvector of the matrix

10 9 7 5
9 10 8 6
7 8 10 7
7 5 6 7

SAMPLE SOLUTION

*RUN D@MEI G
ENTER THE @RDER OF MATRIX.
= 4
ENTER THE MATRIX COLUMN BY COLUMN. SEPARATE EAGCH ITH
A COMMA, BUT D@ NOT PUT A COMMA AT THE END.
10,95 755
95105856
7585 10, 7
Ts 52 62 7
ENTER 1 FBR DBMINANT EI GENVALUE.
ENTER 0 FOR SUBDBMINANT EI GENVAL UE.
= 0
ENTER THE NUMBER OF ITERATIONS T@ BE USED IN LOGKING
FOR THE EIGENVALUE. ENTER A O IF YOU WOULD LIKE
THE SUBROUTINE T@ SET IT FOR Y@ U.
= 50
ENTER EIGENVECT@R GUESS.
= lalslsld
SUBDOMINANT EIGENVALUE AND EI GENVECTOR
1» 7000001E+01
4479 4632 TE-02 4079 46329E-02  8,1508T60E-01 =-5.7535598E~01

wosoHon

PROGRAM STOP AT 99
*
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DVALG

This FORTRAN subroutine finds the quotient of two polynomials and the resulting re-
mainder, if any.
INSTRUCTIONS
The calling sequence for the entry DVALG is:
CALL DVALG(A,NA,B,NB,Q,R,NR,TEST)
where,
@ A is the name of the dividend coefficient array.
@ NA is the degree of the dividend polynomial.
® B is the name of the divisor coefficient array.
@ NB is the degree of the divisor polynomial.
@ Q is the name of the quotient coefficient array.
® R is the name of the remainder coefficient array.
® NR is the degree of the remainder polynomial.

® TEST is the criterion for determining zero coefficients of the remainder polynomial
as shown in the Sample Problem.

All polynomial coefficients are stored constant term first.

RESTRICTION

NB must not exceed NA, which in turn must not exceed 25.

SAMPLE PROBLEM

Divide the polynomial 3X4 + 2X2 + X + 4 by the polynomial X2 - 1 and print the coefficients
of both the quotien_t,Yand remainder, considering any remainder coefficient with a magnitude

less than 1.0 x 10 ~ to be zero.
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SAMPLE SOLUTION

*#10 DIMENSION AC(5)»BU3)50(3)s1(3)

#20 AC1)=4.0

*30 A(2)=1.0

*40 A(3)=2.0

*50 AC4)I=0.0

*60 A(5)=3.0

*70 BC1)=-1.0

*EO B(2)=0.0

*90 B(3)=1,.0

*100 TEST=1.08~7

*¥110 CALL OVALGCA, 458352505 RsNks TEST)

*120 PRINT 10

#130 10 FORMAT (/22K CLOTTENT CUERFICIENTS)
140 DO 15 I=1,3

#150 M=1-1

160 15 PRINT 20, M»OCI)

#170 20 FORMAT(/19K COEFFICIENT Zr Xk, [2, P20 7)
*¥180 PRINT 25

*190 25 FORMAT (/23K REMAINDER CUEFFICIENTS)
*200 DO 30 1=1,3

#210 30 PRINT 20s,1-1,8C1)

*¥220 STOP

*230 END

CLOTIENT CCEFFICIENTS

COEFFTCTIRNT OF X% ( 5.00000C0E+0CD
COERFFICIENT OF xX#% | Ue
COLFFICIENT OF x4 i 3. 00000OCCE+OC

FEMAINDER CCOefFFICTENTS

COLFFICIENT OF Mok O e Q0QNGR0OE+0N)
COMFRICTENT OF X%t | 1 Q00000 LE+DD
COLFFICIENT OF X% 2 O

FROGKAM STOP AT 220

5
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EIG1

This FORTRAN program finds the eigenvalues and eigenvectors of a real symmetric matrix
by the JACOBI-CORBATO method.
INSTRUCTIONS
The calling sequence for entry EIGI is:
CALL EIG1 (A, B, N, EPS, TEMP1, TEMP2, IDIMA, IDIMB)
where, |

@ A is the name of the array containing the elements of the matrix. There are two
options:

IDIMA . EQ. 1. This signifies that A is a single dimensioned variable in which
the elements of the upper triangular portion of the matrix are stored contiguously
and row-wise.
IDIMA . GT. 1. This signifies that A is a double u.mensioned variable in which
the elements of the upper triangular portion of the matrix are stored; i.e.,
A(IDIMA, J).

¢ B is the name of the array in which the eigenvectors are stored column-wise.

e N is the order of the matrix. (Must be greater than 1)

e EPS is the convergence criterion The sum of the squares of the off diagonal
elements will be less than EPS. If EPS=0., 1.0E-12 will be used as EPS.

e TEMP1 and TEMP2 are the names of two arrays containing at least N cells each
that are used for internal storage.

e IDIMA - see A.

e IDIMB is the first dimension of the B array; i.e., B (IDIMB, K).

The eigenvalues are stored in the first N cells of A, where IDIMA equals 1 or in the principal
diagonal elements of A where IDIMA is greater than 1.

SAMPLE PROBLEM

Find the eigenvalues and vectors of the real symmetric matrix

7. -2. 0. 0
-2. 7. -2. -1
0. -2. 7 0.
0. -1. 0 7

use the option where IDIMA = 1, i.e., store the upper triangular elements row-wise in a
single dimensioned variable. Iterate until the sum of the squares of the off diagonal elements
is less than 1. OE-12.
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SAMPLE SOLUTION

10 DIMENSIOGN AC10),B(4, 4), TEMP1¢ 4), TEMP2¢ 4)
20 DATA A/ 703=20500500s Tos=2es=16s TesQes 1o/
30 CALL EIGICA, B, 45 1. 0E~12, TEMP1, TEMP2, 1, 4)
40 DO 10 I=1,4

50 PRINT 20,1,ACI)

60 10 PRINT 30,15(BC(JsIdsJ=1,4)

70 20 FORMAT(11HOEI GENVALUE, 12, 1IPE20.7)

80 30 FORMAT(7TH VECTOR,I2, IP4AE1S,. 6)

90 STOP3END

READY

*RUN *3EIGI

EIGENVALUE 1
VECTOR 1

64999999 SE+00
7.130160E-01 =14681058E=08

EIGENVALUE 2
VECTOR 2

9999998 5E+00
=4, 71 4045E~-01 707106 7E~01

EIGENVALUE 3
VECTOR 3

3¢9999993E+00
4. T14045E-01 7+071067E-01

EIGENVALUE 4
VECTOR 4

6+49999992E+00
~2¢171720E~01 56 154200E-09

PROGRAM STOP AT 90
*

MA-31

-T7.007160E-01

=40 T14046E~01

40 71 4045E-01

-2+ 540721E~01

~20460006E-02

~2.357023E=01

2.357022E~01

96 42 4B80E-01
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EIGSR

This FORTRAN program computes the Eigenvalues and Eigenvectors of a real symmetric
matrix,

INSTRUCTIONS

The instructions for providing input to this program are generated by the program itself
(see the output of the sample solution). If the user types a matrix element incorrectly,

the program permits the element to be corrected. The program also generates the instruc-
tions for correcting input typing errors (see sample problem).

Whenever the Eigenvalues and Eigenvectors of a given case have been computed the user is
then given the opportunity to insert ancther real symmetric matrix. This program loop
will continue until the user types 0 (zero) in response to the q ‘estion "ORDER?"".

RESTRICTIONS

The maximum-size, real-symmetric matrix that can be accepted by the program is a
25 x 25.

NOTE:

This program calls the subroutine EIGI1.

SAMPLE PROBLEM

Compute the Eigenvalues and Eigenvectors of the following real symmetric matrix.

— D2 W Ul
Wk O g
T -0 W
«J 0 O D2
W =3 JT W =

1. Goldstine, H. H., Murray, F.J., and VonNeuman, J. - The Jacobi Method for
Real Symmetric Matrices. A. C. M. Journal, Volume 6, Number 1, 1959
pp 59-96.

2. Corbato, F.J. - On the Coding of Jacobi's Method for Computing Eigenvalues
and Eigenvectors of Real Symmetric Matrices. A.C. M. Journal, Volume 10,
Number 2. 1963. pp 123-125.
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SAMPLE SOLUTION

*RUN_EIGSR3EIGI

DO YOU DESIRE USER INSTRUCTI@NS, TYPE YES OR NO

= YES

THIS PROGRAM FINDS THE EIGENVALUES AND EIGENVECTORS OF A REAL
SYMMETRIC MATRIX BY THE JAC@BI-CORBATO METHOD

THE MATRIX IS @F THE FORM

A1l Al12 AIN WHERE THE A(1,J) ARE REAL(FLOATING POINT) AND
A21 A22 A2N N(FIXED POINT) CANNOT EXCEED 25%

AN1 AN2 ANN

SINCE THE MATRIX IS SYMMETRIC, ONLY THE ELEMENTS
ON AND ABOVE THE DIAGONAL ARE INPUT.

THE PROGRAM TYPES AClsld= THE USKER TYPES THE FIRST ROW ELEMENTS.
PRO GRAM TYPES A(2,2)= THE USER TYPES THE SECOND ROW»STARTING
WITH THE DIAGONAL ELEMENT.=-ETCe= TO AN,N)

INPUT IS TYPED IN THE FREE FIELD F@RMAT»,A CARRIAGE RETURN ENDS THE FIELD

AFTER A(NsN) IS INPUT-THE PROGRAM PROVIDES THE OPPORTUNITY
AND INSTRUCTIONS FOR CORRECTING TYPING ERRORS

NOW YOU TRY IT

ORDER

=5

AC 1, 1)

= 5,453,251

AC 2, 2)

= 650,453

AC 3, 3)

= 73655

AC 4, 4)

= 8.8

AC 55 5

= 9

ARE ANY OF THE ABOVE A(1,J) ELEMENTS TYPED INCORRECTLY.
IF USER WISHES TO CORRECT AN ELEMENT: TYPE YES, WOTHERWISE. TYPE NO

ANY CORRECTIONS.

= YES

CORRECT ELEMENT BY TYPING I SUBSCRIPT(ROW),SPACE OR COMMA,J SUBSCRIPT
(COLUMN)Y, SPACE OR COMMA, VALUE,CARRIAGE RETURN

= 4y 757
ILLEGAL SUBSCRIPT» 1 GREATER THAN J,O@R I ©R J GREATER THAN N-TRY AGAIN

= 455, 7
ANY CORRECTIONS.
= No.
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ORDER

THE SUM OF THE SQUARES OF THE OFF DIAGONAL ELEMENTS OF

X

@RDER
=0
PRO GR
£

= 5

EIGENVALUE 1
=1.0965953E+00

EIGENVALUE 2
7.5137230E+00

EIGENVALUE 3
40.8489490E+00

EIGENVALUE 4
13270454E+00

EIGENVALUE 5
2.2406871E+01

EIGENVECTOR
4.6935802E-01
~5.4221224E-01
-5.4445245E-01
4.2586562E-01
§.B8988522E-02

EIGENVECTOR
5.5096188E~01
7.0944027E-01

=3.4017920E-01
-8.3410963E~02
-2-6513568E'01

EIGENVECTOR
5:.4717278E-01
~3.1256994E~01
6.1811196E-01
~1.1560664E~01
~405549376E~01

EIGENVECTOR
~3.4101303E~01
1.1643460E-01
1¢9590693E-02
6+8204296E~01
~6+3607129E-01

EIGENVECTOR
2.4587793E-01
3.0239601E~01
4¢5321448E-01
5:7717706E~01
5.5638448E~01

T A X = 2.6438681E~-11

AM STOP AT 1460
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ERRF

This FORTRAN function evaluates the error function or its complement.

INSTRUCTIONS
The calling sequence is:
Y = ERRF(X)
where,
@ | X | is the independent variable
® Y is the error function, if X is greater than 0.

® Y is the complement of the error function, if X is less than 0.

RESTRICTIONS

If X =0, the value returned is Y = 0.

For value of X greatef than 13, exponential overflow may occur. For X not less than 6, a
value of 1 is returned for the error function but the complementary error function is still
significant.

SAMPLE PROBLEM

Find the value of the error function and its complement for the first 10 positive integers.

SAMPLE SOLUTION

10 PRINT 1

20 1 F@RMAT(" X ERRF (X) C@M_ERRF (X)')
30 DG 2 i=i,10

40 X=1

50 Y=ERRF (X}

60 ZZERRF (=X)

702 PRINT 3sXsYeZ

80 3 FORMATCIP3EIG.T)

90 ST@PJEND

READY

X ERRF (XD COM ERRF (X}
1.0000000E+00 8042 70073E-01 1.5729926E-01
2.0000000E+00 F.9532226E~01 4= 6777331E-03
3.0000000E+00 9:999T791E~01 2.2090515E~05
4:0000000E+00 9+9999998E~01 1.5417261E~08
5:0000000E+80 FII99999E-01} 1.5374581E~12
6+,0000000E+00 P.9999999E-01 2.1519699E~17
7-0000000E+00 1.0000000E+00 4.1838189E~23
8.0000000E+00 1.0000000E+00 1.1224288E-29
9-0000000E+00 1-0000000E+00 4.1370322E-37

1.0000000E+01

PROGRAM STBP AT 90

&

1.0000000E+00

(')
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ERRINV

This FORTRAN function finds the inverse of the error function.

INSTRUCTIONS

'i‘he calling sequence is:
Y = ERRINV(L, C)

where,

@ Y is the inverse of the error function.
When L = 0, C is the complement of the error function.
When L = 1, C is the error function.

RESTRICTIONS

If the error function is input, a value of 6.0 will be returned for C greater than or equal to
. 999999997,

If the complement of the error is input, exponent overflow may occur when C is
close to zero.

The library subprogram ERRF must be used with ERRINV as shown in the Sample Problem.

METHOD

Newton's iteration method is used.

SAMPLE PROBLEM

Find the inverse of the error function for values of . 1,.2,.3,.4,.5,.6,.7,.8, and . 9,
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SAMPLE SOLUTION

10 PRINT 1
20 i FORMAT ERRF (X) X"
30 DO 2 I=1,9
40 C=1
50 C=C/10.0
60 Y=ERRINV(1,C)
70 2 PRINT 3,C,Y
80 3 FORMATC(IP2E16.7)
90 STOPSEND
READY
#*RUN %3 ERRINV3ERRF
ERRF (X3 X
1-0000000E-01 3.8856093E~02

PRAGRAM ST@P AT 90

*

2.0000000E-01
3.0000000E~-01
4.0000000E-01

17914334E~01
2.7246277E~01
3. 7080727E-01

5.0000000E~-01 4¢T693624E-01
5.9999999E-01 5.9511594E-01
7.0000000E~01 T.3286902E-01
8.0000000E~-01 9.0619390E~01

9+0000000E-01

1.1630872E+00

MA-37

ERRINV-2

#DA43



EUALG-1

EUALG

This FORTRAN subprogram finds the greatest common divisor of two polynomials using a
Euclidean algorithm.
INSTRUCTIONS
The calling sequence is
CALL EUALG (A, NA, B, NB, C, NC, TEST)
where
A is the array of coefficients of the polynomial of greater order.
NA is the degree of the polynomial in A.
B is the array of coefficients of the polynomial of lesser order.
NB is the degree of the polynomial in B.
C is the coefficient array of the greatest common divisor polynomial.
NC is the degree of the GCD polynomial.

TEST is the criterion for determining zero coefficients of the polynomials. Proper
functioning of the routine may depend on the judicious selection of this value.

The coefficients are stored in the A, B, and C arrays in order of increasing powers of
X, i.e., A(1) = constant term.
RESTRICTIONS

NB = NA = 25

This routine calls the LIBRARY routine DVALG, which must be executed concurrently.
See the sample solution.

SAMPLE PROBLEM
Find the GCD polynomial of

x5 -1

and

X4+X3+2X2+X+1
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SAMPLE SOLUTION

*LIST

10 DIMENSION A(S)»BC4),CC4)
20 DATA A,BAlesles2eslosleos~10s0050cs1+/

30 TEST=1E-4

40 CALL EUALG(As4sBs»3,CsNC>TEST)
50 PRINT 10,NC
60 10 FORMAT ("

70 N=NC+1

80 DO 20 I=1sN

90 IM=]1-1

100 20 PRINT 30.,IM.,CCI)
110 30 FORMAT ("

120 STOP
130 END

READY

THE GCD POLYNOMIAL (DEGREE ',12,'')")

THE COEF. OF Xt",12,1PE20.7)

*RUN *3 EUALG3DVALG

THE GCD POLYNOMIAL

THE CUEF. OF
THE COEF. OF
THE COEF. OF

PROGRKAM STOP
*

Xt
Xt
X1t

AT

0
1
2

120

(DEGREE 2)

1.0000000E+00
1.0000000E+00
1.0000000E+00
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FDRVUL

This FORTRAN function computes by numerical differentiation the first derivative of a
tabulated function, where the independent variable may be unequally spaced.

INSTRUCTIONS
The calling sequence for the entry FDRVUL is:
ANS = FDRVUL(T,X,Y,NPTS,NORDER)
where,
e ANS is the value of the first derivative at T.
e T is the value of the independent variable at which the derivative is to be computed.

® X is a vector of tabulated values of the independent variable stored in ascending
order.

® Y is a vector of tabulated values of the function corresponding to X.
@ NPTS is the total number of paired (X,Y) points.

e NORDER is the desired order of the polynomial that will be used to approximate
the first derivative.

RESTRICTION
Tabular values of the independent variable, X, must be stored in ascending order.
NORDER<NPTS

X(1)s T<X(NPTS)

METHOD
Lagrange's method for unequally spaced points is used. An NORDER polynomial is fit through

the INT [ (NORDER+1)/27 points preceding T and the (NORDER+1)-INT [ (NORDER+1)/2 7
points following T. (INT denotes integer value.) V

SAMPLE PROBLEM

Find the first derivative at T = 1.5 using a second degree polynomial and the following set
of tabular data:

X X
0 0
1 1
2.5 6. 25
4 16
5 25
6.5 42,25
7 49
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SAMPLE SOLUTION

i0 DIMENSION X(7),Y(T)

20 X(1)=0-03Y(12=0-0

30 X€2)=1.03X(3)=253X(4)=24403X(5)=5.03X(6)=6-53X(7)=7.0
40 Y(2)=103Y(3)=26:253Y(4)=16+03Y(5)=25.03Y(6)=42.25

50 Y(7)=49.0

60 T=1.5

70 NPTS=7

80 N@RDER=2

90 ANS=FDRVUL (Ts Xs Ys NPTS»NGRDER)

100 PRINT 30,T»ANS

110 30 FORMAT(/"OTHE VALUE OF THE FIRST DERIVATIVE AT",F5.2," [S"s
120& 1PE16+6)

130 STOP3END

READY

*RUN %3 FDRVUL

THE VALUE @F THE FIRST DERIVATIVE AT 1.50 IS 20 999999E+00

PROGRAM ST@P AT 130
*
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FINT

This FORTRAN function evaluates by Fourier integral evaluation the function:

b
Fy (w) :.{ f(x)sin ( wx)dx
or the function

b
F2 (w) :_é f(x)cos ( wx)dx

INSTRUCTIONS
The calling sequence for the entry FINT is:
Y = FINT(IND,A, B,N,W, FUNC)
where,
® Y is the value of the function.

e IND determines the function: IND =

1 (w) is obtained.
IND =2

1

5 (@) is obtained.

® A is the lower limit of integration.

@ B is the upper limit of integration.

® N is the number of sample points to be used in the integration.

® W is a multiplier for the variable of integration in the argument of the sine or
cosine term. W must be chosen so that wx, where x is the variable of integra-
tion, is in radians.

® FUNC is the name of a function to supply values of f(x) given a value of x. An

external statement must be used to define FUNC. For example, see the
Sample Problem.

RESTRICTION

N-1

The term W- must not be less than .007.

METHOD

Filon's formula is used to perform the integration.

If N is odd, the interval of integration is divided into equal sub-intervals of length H = (B-A)/
(N-1) and the function f(x) is approximated by a parabola in each double interval.
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If N is even, Filon's formula is used on the fi*rst N-1 points and in the remaining interval,
f(x) is approximated by a linear interpolation .

SAMPLE PROBLEM

Evaluate the function below, using W =1 and 100 sample points, i.e., N = 100.
f 15
_ =X gj
F1 (w) = 0 e sin (x)dx

SAMPLE SOLUTION

10 EXTERNAL FX

20 Z=zFINT(C15040515.0510051.0sFX)
30 PRINT 10,2

40 10 FORMAT(/24H VALUE @F THE FUNCTION =,1PE20.7)
50 STOP

60 END

70 FUNCTION FX(X)

80 FXaEXP(~X)

90 RETURN

100 END

READY

*RUN *3FINT
VALUE ©OF THE FUNCTION = 4:999954TE~01

PROGRAM STBP AT 50
*

* Hamming, R. W., Numerical Methods for Scientists and Engineers, McGraw-Hill,
New York, 1962, Pages 319-321.
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FRESNL

This FORTRAN subroutine evaluates the Fresnel integrals.

1 0 sin ()
S6) = ==, A
and
_ 1 X cos (t) dt
€)=~ [,

INSTRUCTIONS

The calling sequence is -
CALL FRESNL(SX,CX, X)
1. SX is the value of S{x)
2, CX is the value of C(x)

3. X is the real argument of S(x) and C(x).

METHOD

Boersma, "Computation of Fresnel Integrals'', MTAC, V, 14, 1960, p. 380.

RESTRICTIONS

X, GE, 0. In the case of a negative argument the absolute value of X will be used.

SAMPLE PROBLEM

Find S(x) and C(x) for x = 1. 5707963 and x = 6. 2831853,
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SAMPLE SOLUTION

#*LIST

10 X=1.5707963

20 CALL FRESNL(SXsCXs X)

30 PRINTe"XsSXsCX"'s X5 SXsCX
40 X=6.2831853

50 CALL FRESNL(SX»CXs X)

60 PRINTS"XsSXsCX"sXsSXsCX
70 STOP

80 END

READY

#RUN_*3 FRESNL

Xs SXsCX 1.5707963E+00 4.3825911E-01 7.7989335E~01
X2 SXsCX 6.2831852E+00 34341568E~01 4.8825340E-01

PRBGRAM STAGP AT 70
*
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GAHER

This FORTRAN function performs Gauss-Hermite guadrature; i. e., it evaluates the
integral

/°° e_xz f(x)dx

- OO

INSTRUCTIONS
The calling sequence is-
ANS = GAHER(NARG, FUNC)
where,
ANS is the value of the integral.
NARG is the number of abscissae and weight coefficients to be used.

FUNC is the name of a function subprogram, supplied by the user, which evaluates
only that part of the integrand represented by f(x). It is of the form-

FUNCTION FUNC(X) where X is the independent variable.

METHOD

See Kopal, Z., Numerical Analysis, (1961), p. 569.

RESTRICTIONS

1. 2. LE. NARG. LE. 20.

SAMPLE PROBLEM

Problem - To evaluate

-x2
f e X ; dx using the 12-point Gauss - Hermite quadrature, NARG = 12.
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SAMPLE SOLUTION

#LIST

10 EXTE
20 PRIN
30 10 F
40 DO 3

50 ANS=GAHER(NARGs FUNC)

RNAL FUNC
T 10

ORMAT (" NARG

0 NARG=2,20

ANS')

60 20 FORMAT(1X>125,3X5F12.8)

70 30 PRINT 20sNARGsANS

80 STOP

90 END

100 FUNCTION FUNC(X)
110 X2=X%X

120 FUNC=X2/ (X2+4+)
130 RETURN

140 END

READY

*RUN %3 GAHER

NAR G ANS

2 019693931
3 0.16113217
4 016953905
5 0.16721262
6 016793688
7 016769020
8 0.16778045
9 0.16763283
10 0.16775970
I 016775364
12 016775631
13 016775503
14 016775566
15 016775539
16 016775551
17 016775545
18 016775549
19 0.16775546

20 016775542

PRO GRAM STOP AT 80

*
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GALA

This FORTRAN function performs Gauss-Laguerre quadrature, i.e., it evaluates the
integral

f"" e ® f(x)dx
0

INSTRUCTIONS
The calling sequence is~
ANS = GALA (NARG, FUNC)
1. ANS is the value of the integral.
2. NARG is the number of abscissae and weight coefficients to be used.

3. FUNC is the name of a function subprogram, supplied by the user, which
evaluates only that part of the integrand represented by f(x). It is of the form

FUNCTION FUNC(X)

where X is the value of independent variable.

METHOD

See Kopal, Z., Numerical Analysis, (1961), p. 564.

RESTRICTIONS

1. 2. LE.NARG. LE. 15.

SAMPLE PROBLEM

Problem - To evaluate

cO

f e ® (x+4)—1 dx using the 7-point Gauss-Laguerre quadrature, NARG = T.
0
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SAMPLE SOLUTION

*L 1

ST

100
110
120
130
REA

*R L

EXTERNAL FUNC

PRINT 10 ‘
10 FORMAT (" NARG ANS™
DO 30 NARG=2,15

ANS=GALA(NARGs FUNC)
20 FORMAT(1X»1253X»F12.8)
30 PRINT 20,NARGsANS
STOP
END
FUNCTION FUNC(X)
FUNC=1o/(X+4.)
RETURN
END

DY

N k3 GALA

NAR

ORI LD

10
11
12
13
14
15

PRO
*

G ANS
0.2058€235
0.20629370
0.20633802
020634429
0.20634537
0.20634558
0.20634563
0.20634563
0.20634564
020634564
0.20634564
0.20634564
0.20638337
020634564

GRAM STOP AT 80
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GAMF

This FORTRAN function evaluates the gamma function.

INSTRUCTIONS
The calling sequence is:
Y = GAMF(X)
where,
e Y is the value of the gamma function.

® X is the value of the independent variable.

RESTRICTION

X may not be a negative integer or zero.

METHOD

Polynomial approximations.

SAMPLE PROBLEM

Find the gamma function for X = -1.5, -0.5, 0.5, 1.5.

SAMPLE SOLUTION

10 PRINT 1

15 1 FORMAT (" X GAMF (X))
20 D@ 2 1=1,4

25 xsl

30 X=X=2+5

as Y= GAMF (X)

40 2 PRINT 3sXsY
45 3 FORMAT(IP2E16.72
50 STOP3END

READY

®*RUN %3 GAMF
X GAMF (X
=105000000E+00 2.3632720E+00
=5.0000000E-01 =3.5449080E+00
5.0000000E~-01 1+7724540E+00
1+5000000E400 8.8622699E~01

PRAOGRAM ST@P AT 50
*
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GAUSSN

This FORTRAN function evaluates a definite double or triple integral by Gaussian
Quadrature.

INSTRUCTIONS

To evaluate the integral

(a) [Bl /.Bz(W) fB3(V, w) v, w) du dv dw
A4 A2(W) A3(V’ W)

or

(b) [Bl /Bz( ) f(v,w) dv dw
Ay TAg(w)

The calling sequence is
ANS = GAUSSN (M, N, FUNC)
where

2 if the double integral (b) is to be solved
3

M =
M = 3 if the triple integral (a) is to be solved
N

is the number of abscissae and weight coefficients to be used.

FUNC is the name of a function subprogram, supplied by the user, which evaluates the
upper and lower limits of the integrals and the integrand. It is of the form:
FUNCTION FUNC (IGO, A, B, X)
where:
A, B, and X are vectors dimensioned A(M), B(M), and X(M)

X is the vector of the variables of integration, i.e., X(1) =w, X2)=v, XB3) =u

If the IGO = M, the routine sets FUNC = {(x). -If IGO < M, the routine sets
A(IGO) = AIGO(X) and B(IGO) = Bigo(X).

ANS is the value of the integral.

METHOD

See Kopal, Z., Numerical Analysis, (1961), p. 386.

RESTRICTIONS

1. 2=N=16 37
2. If M # 2,3 then ANS = -10
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SAMPLE PROBLEM
Integrate the triple integral
1 2w 2vw
f' f f uv du dv dw
0 w vw
Using a 7-point Gaussian method, where X(1) is used for w, X(2) is used for v, and X(3)

is used foru. N =17, M= 3.

SAMPLE SOLUTION

*
*LIST

10 EXTERNAL FUNC

20 NAMELIST /SOLN/Ns»ANS

30 N=7

40 M=3

50 ANS=GCAUSSN(MsN»FUNC)

60 WRITEC™ ", SOLN)

70 STUP

80 END

90 FUNCTION FUNCCIGI»>AsBsX)
100 DIMENSION AC3),B(3)sX(3)
110 GO TO (10,20530540), 100
120 10 BC1)X=1.

130 AC1)=0.

140 RETURN

150 20 B(2)=2.%X (1)

160 A(2)=X(1)

170 RETURN

180 30 B(3)=2.%kX(2)%X(1)
190 AC3)=X(2)*%X(1)

200 RETURN

210 40 FUNC=X(2)*X(3)

220 RETURN

230 END

READY

#*RUN *3 GAUSSN

NAMELIST SOLN
N 7
ANS 0.80357096E 00

PRU GrAM STOP AT 70
*
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GAUSSQ

This FORTRAN function computes the definite integral

fa b f(t)dt

by Gaussian quadrature.

INSTRUCTIONS

The calling sequence for the entry GAUSSQ is:
Y = GAUSSQ(N,FUNU,A, B)

where:

® Y is the value of the integral.

e N is the number of values of f(t) to be used.

® FUNC is the name of a function that returns a value of f(t) given a value of t.
® A is the lower limit of the integral.

® B is the upper limit of the integral.

RESTRICTION

The number of values of f{t) must be between 2 and 8; i.e., 25N<8,

METHOD

For the method used in this subprogram, see Footnotel,

SAMPLE PROBLEM
Evaluate by Gaussian quadrature the definite integral

[2 ”sin(x)dx
N

Rl ¥

using 6 values of the integrand. Use the value of 6. 28 radians for 2.

1 Scarborough, J. B., Numerical Mathematical Analysis, Johns Hopkins Press, Baltimore,
Maryland, Third Edition, 1955, Article 54.
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Note that in comparing the results of the two sample problems, CLCINT and GAUSSQ, the
latter subprogram will obtain a more accurate result. The difference between these two

results exists because of the mathematical method employed.

SAMPLE SOLUTION

10 EXTERNAL FUNC

20 Y= GAUSS@( 6, FUNCs 0o s 60 28)
30 PRINT 15, Y

40 15 FORMAT(/6Ks 23HVALUE @F THE INTEGRAL =» IPE20.7)
50 STeP

60 END

70 FUNCTI@N FUNCCX)

80 FUNC=SINCX)

50 RETURN

100 END

R EADY

#*RUN #3 GAUSS@
VALUE @F THE INTEGRAL = 5. 03371 7T1E~06

PRBGRAM STBP AT 50
#*
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GCDN

This FORTRAN subroutine finds the greatest common divisor of n integers aj and multipliers
zj such that ged =z,a, +... + zn a..

METHOD

Bradley's version of the Euclidean algorithm is used. 1 The number of arithmetic operations
is linear in n.

INSTRUCTIONS
The calling sequence is

CALL GCDN (N, A, Z, IGCD)

where
is the number of integers.
A is a single dimensioned integer array containing the input integers. The input is
destroyed.
Z is a single dimensioned integer array used to output the N multipliers.

IGCD is the greatest common divisor of the A(I) integers.

SAMPLE PROBLEM

Find the GCD of -420, 0, 168, 252, 1260 and the multipliers z;.

1 Bradley, G. H., "Algorithm and Bound for the Greatest Common Divisor of n Integers',
Communications of the ACM 13, p. 433 (1970).
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SAMPLE SOLUTION

*LIST

10 INTEGER A(5)»Z(5)

20 DATA A/=420,0:168,252,1260/
30 PRINT:"A=""HA

40 CALL GCDN(S5S,A»Z,I1GCD)

SO PRINT:"Z=",2Z

60 PRINT:'"GCD='"»1GCD

70 STOP

80 END

READY

*RUN %3 GCDN

Az - 420 0 168 252 1260
Z= 1 0 -2 0 0
GCD= 84

PROGRAM STOP AT 70
*
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GJSIMEQ

This FORTRAN subroutine solves a real system of N simultaneous equations in N unknowns
of the form AX=B.

INSTRUCTIONS
The calling sequence is:

CALL SIMEQ(A, B, N, KERR, IDIM)

where,
® A is the name of a two dimensional array which contains the coefficient matrix
in its first N rows and columns. It is destroyed during execution.
® B is the name of a one dimensional array containing the constant vector and
which contains the solution vector on completion.
® N is an integer variable or constant which gives the order of the system.
® KERR is the name of a real variable which will be returned as a one if the

system is singular, or a zero if the solution was found.

® IDIM is the dimension of A and B.

METHOD

The GAUSS-JORDAN method with pivotal condensation is used. A series of elementary row
and column operations are applied to the matrix of coefficients, A, and to the constant
vector, B. This process reduces the matrix of coefficients to the identity matrix. Then
the resulting B array will contain the required solution.

RESTRICTIONS

This subroutine is best used for systems which have a dense matrix of coefficients, A. If
a large sparse strongly diagonal matrix of coefficients is to be solved, then the GAUSS-
SEIDEL iteration subroutine should be used.
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SAMPLE PROBLEM

Solve the following systems of equations:

X1—3X3+7X4=13

—4.5X2+2X3 +13X4=4
2X1 »ZXZ—XB—-‘Y
~Xi—+X2~+9X4:=8
Xl +2X2 i 3X3 ::1
Xl i 2X2+3X3:0
X, +X,=3

L o}

SAMPLE SOLUTION

010 DIMENSION AC31,313,B(31)

020 KERR=0

030 1 PRINT:ENTER THE ORDER @F THE SYSTEM®™
0 40 READ:N

050 PRINT: "ENTER MATRIX CoLUMN BY COLUMN®
060 READ: CCACI»J)pl=1N)eJd=15N)

070 PRINT:“ENTER VECTOR ELEMENTS"™

080 READE (BCI), I=1oN)

090 CaLL SIMEGCA, BsN,KERRs 313

100 IF(KERR) 555 52, 55

110 52 PRINT3"THE SOLUTION IS™
120 60 PRINT:(BC{IYsI=1,N3

130 STQP

140 55 PRINTs"SINGULAR™

i 60 STOPs END

READY

* RUN %3 GJSIME®
ENTER THE GRDER @F THE SYSTEM
=4
ENTER MATRIX COLUMN BY COLUMN
1109‘3:7
Os=dn 550513
2@21'1)0
=415 15059
NTER VECTBR ELEMENTS
13'491L§
THE S@LUTION 1S
~3.2672414E+00  2.5886699E+00

PROGRAM STOP AT 130

*RUN_#3 GJSIMEQ

ENTER THE GRDER @F THE SYSTEM
3

ENTER MATRIX COLUMN BY COLUMN

Wopm o WoBouoH

LU
e
Av]
®
(%)

15081

m™m
Z
o
™
m}
<
™1
o]
ot ]
(]
el
=l
|
™
4
-
[42]

H

i
s
w
o
®
w

PRG GRAM STOP AT 160
*
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GSEIDEL

This FORTRAN program solves a system of N simultaneous real equations in N unknowns,
using the Gauss-Seidel iteration method.

INSTRUCTIONS
Supply data as requested.
GSEIDEL can also be used as a subroutine by deleting lines 1 through 669. The calling
sequence for the entry would then be:
CALL GSEIDEL (A, B, N, C, IR)
where,

e A is the name of a two dimensional array containing the coefficients of the system
of equations.

® DB is the name of a one dimensional array containing the constant vector.
e N is the order of the system.

® X is the name of a one dimensional array which must contain initial estimate of
the solution vector if IR is negative. X contains the solution vector on completion.

¢ IR is an integer variable giving the maximum number of iterations to be used to
find the solution. If the users initial guess is to be used then IR should contain
minus the number of iterations.

On return, IR equals the number of iterations needed to find the solution if one was found.

If no solution was found, after the maximum number of iterations or the system was diverging,
then IR is returned as zero. If one of the pivot elements is zero and the method cannot be
used, then IR is returned as -1.

NOTE:

This method is used more effectively than the elimination method on a large sparce
matrix of coefficients. This method is limited since it does not converge for all
systems. However, for matrices which are strongly diagonal, convergence is assumed.
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SAMPLE PROBLEM

Solve the following systems of equations:

X - X2+ X3+5X4 = -2
—X1+2X2+4X3+ Xy = 23
X1+6X2+ X3+3X4 = 11
4X1-2X2+ X3 = 16
X+ X2+3X3 = 30
2X1+5X2+ Xq = 211

= 10

5X1 + 2X2 + X3

SAMPLE SOLUTION

* RUN

GSEIDEL

ENTER ORDER @F SYSTEM (N):

4
NTER COEFFICIENT MATRIX ROW BY R@Ws
1s=15155
©1s2s A5 1
1065153
by=25 120
ENTER CONSTANT VECTAR
= =2,23511016
ENTER MAX. NG. OF ITERATIGNS
= =20
ESTIMATED SOLUTIBN VECTER ?
= »e553,8520 7032

a8 iom

THE COEFFICIENT MATRIX ISt

1« 0000000E+0C0 ~1+0000000E+00 1. 0000000E+00 5. 0000000E+0O
=20 0000000E+00
=1+ 0000000E+00 20 0000000E+00 4. 0000000E+QO 1.0000000E+00
2. 3000000E+01
1. 0000000E+00O 6. 0000000E+00 1. 0000000E+00 3.0000000E+00
1+ 1O00000E+O i
4. 0000000E+00 ~2.0000000E+00 1 0000000E+0O Oe =
1+ 6000000E+01

E
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THE S@LUTIGN VECTBR
3.0438062E+00 1.2773663E+00 6+ 3795648E+00 ~2.0292009E+00

ANY @THER SYSTEMS T8 SOLVE ? (Y @R N)
= Y

ENTER @RDER @F SYSTEM (N)s

= 3

ENTER COEFFICIENT MATRIX RAW BY ROWs
2 1513 :

& 2: 501

= _5:2:1

ENTER CONSTAMT VECT@R

= 30,2115 10

ENTER MAXe. NO. @F ITERATIONS

= 30

THE COEFFICIENT MATRIX IS:

1. 0000000E+00 1+ 0000000E+00 3.0000000E+00
2, 0000000E+00 5. 0000000E+0Q 1« 0000000E+ 0O
5. 00000C0E+Q0 2. 0000000E+ 00 1. 0000000E+ 00

3. 0000000E+01}
2. 1100000E+0Q2
1« 0000000E+O1

in N

THE S@LUTIGN VECTE@R
~1.7631583E+01 4,9368421E+01 -5, T894611E-01

ANY OTHER SYSTEMS T® S@LVE ? (Y @R NJ
= N

P RO GRAM STOP AT 650
*
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HDRVEB

This FORTRAN function computes the first, second, third, fourth, or fifth derivative of

a tabulated function using difference quotients. The independent variable must be equally
spaced.

INSTRUCTIONS

The calling sequence for the entry HDRVEB is:

ANS = HDRVEB(T,X,Y,NPTS,NDRV)

where,
® ANS is the value of the derivative requested at T.
® T is the value of the independent variable at which the derivative is to be
computed.
@ X is the name of the vector having the equally spaced tabulated values of
the independent variable stored in ascending order.
® Y is the name of the vector of tabulated values of the function corresponding

to X.
@ NPTS is the total number of paired (X,Y) points.
® NDRYV is defined as follows:

NDRV = If the first derivative is desired

1

2 If the second derivative is desired
3 If the third derivative is desired
4 If the fourth derivative is desired
5 If the fifth derivative is desired

RESTRICTION

Tabular values of the independent variable, X, must be stored in ascending order and must
be equally spaced.

T=X(J) for some J (J=1,2,... NPTS)
NPTS26

1<NDRV<H

METHOD
Six point numericai differentiation formulas are used. These formulas have an error term

proportional to h6‘f6 where h is the increment of the independent variable and fg is the
sixth derivative of the function.
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SAMPLE PROBLEM

HDRVEB-2

Find the first five derivatives of the function F{X) = )(5 at T=4.0forX =1,2, 3,...., 10,

SAMPLE SOLUTION

010 DIMENSION X(103,YC10)

020 X€{1)=20.08YC132=0.0

030 DB 10 I=2,10

0 40 K(I)=X(I-13+1.0

050 10 YC{I)=XC1)%*5

060 T=4.0

070 NPTS=10

090 D@ 20 I=1,95

100 NDRV=1

110 ANS=HDRVEB( T»X» Y>NPTS: NDRV)
{20 PRINT 30, T-NDRVs ANS

130 30 FORMAT("OFBR T=",F5.2," THE"»13," DERIVATIVE [5%, §PERO. )
150 20 CONTINUE

i 60 STOP3 END

READY

# RUN #3 HDRVEB

F@R

FOR

FaR

T=

T=

Ta

T=

4,00 THE | DERIVATIVE IS
4,00 THE 2 DERIVATIVE IS
4,00 THE 3 DERIVATIVE IS
4,00 THE 4 DERIVATIVE IS

4,00 THE 5 DERIVATIVE IS8

PROGRAM STOP AT 160

#

MA-63

1. 2800D00E=*03
1. 2800000E+03
9+ 6000000E+02
4. 8000000F+ 02
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JACELF

This FORTRAN subroutine computes the three Jacobian elliptic functions, sn, ¢n, and dn.

METHOD

Jacobian elliptic functions arise as inverse functions of elliptic integrals. Thus, if

X = /‘u .,.c_i,t__*_
lo V(1-t2)(1-k22)

_ “ dt
| V1 - k%sint

= F(w, k) = incomplete elliptic integral of first kind
Then

sni(x,k) = sing = u
en(x,k) =cosg = \/1 - uz
dn(x, k) = \G *kzsinzq) = \/1 - k2 uz

The value k is the modulus, ¢ the complementary modulus, and s the square of the com-
plementary modulus:

5:02:1~k2

INSTRUCTIONS
The calling sequence is -
CALL JACELF(SN, CN, DN, X, S)
where:
SN is the resultant value for sn(x, k).
CN is the resultant value for cn(x, k).
DN is the resultant value for dn(x, k).
¥ is the argument of the Jacobian elliptic functions.

S is the square of the complementary modulus.
REFERENCE

Bulirsch, R., Numerical Calculation of Elliptic Integrals and Elliptic Functions, Hand-
hook Series of Special Functions, Numerische Mathematik, Vol. 7, 1965, pp. 78-90.
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SAMPLE PROBLEM

Find SN, CN, and DN for x =, 17475384, S = .75,
SAMPLE SOLUTION

*10 X=.17475384

*20_Y=.15

*3C CALL JACELF (SNsCNs DNy X Y)
#40 PRINT:''SNsCN,DN", SNsCN,DN

*50 STOP

*60 END

*RUN %3 JACELF

SN» CN»s DN 1.7364817E-01 9.8480775E-01 9.9622364E-01

PRO GRAM STOP AT 50

A
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LINEQ

This FORTRAN subroutine solves a system of simultaneous linear equations with real
coefficients.

INSTRUCTIONS
The calling sequence is:

CALL LINEQ(A,B,NA NB,IDIM)
where,

® A is the name of the array containing the matrix of coefficients. The coefficient
matrix is altered during the course of the solution.

® B is the name of the arrayv containing the right side vectors. The solutions are
stored in B, thus destroying the original right hand vectors.

® NA is the number of equations.
® NB is the number of right side vectors.

e IDIM is the number of elements in the first dimension of the A and B arrays.

RESTRICTIONS

The first dimension of the A and B arrays must be 1DIM, i.e., A(IDIM,I), BIDIM, J).

The number of equations must not exceed 25.

METHOD

The solution is obtained by the Gaussian Elimination Methodl.

SAMPLE PROBLEM

Solve the following system of simultaneous linear equations for two right side set of
constants.

A-2.%B+3.%C +4.*D =4.5, 9.0
3.%A - B +2.*%C +5.4D =9.5,19.0
2.A +4.*B-5.*C+ D =15.,30.0
4.%A 1 2.%*B - C+3.%D =12.,24.0

1Scarbor0ugh, J. B., Numerical Mathematical Analysis, The Johns Hopkins Press, Sixth
Edition, Baltimore, Maryland, 1963.
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SAMPLE SOLUTION

10 DIMENSIBN A(25,4),B(25,2)

20 ACls13=2103AC354)81.0

30 A€2,1)=3.03AC153)23.05A(45,4)=3.0
40 AC3,1382.03AC4,2)82.03A(253)=%2.0
S0 AC4s 1)24:03A(35s2)24.03A(12,4)24.0
60 A(1s2)2-2.0

70 A(252)=~1003A(453)=~1.0

80 A35,3)=2=5.0

90 A(2,4)m5.0

100 B(lsl1)=4.5

110 B(2,13=9.5

120 B(3,1)=15.0

130 B(4,13=12.0

140 B(i1,2)=29+0

150 B(2:2)=19.1)

160 B(3,2)=30.0

170 B(4,2)=24.0

180 CALL LINEQCAsBs4s2s25)

190 D@ 5 I=1,2

200 PRINT 10, 1

210 10 FORMAT(/19H SOLUTION TO VECTOR«12)
220 PRINT 205 B(1,1)sB(2,1)

230 20 FORMAT(3H A=, IPE20.755Xs3H B=s 1PE20.7)
240 S PRINT 30, B(3,13-,BC451)

250 30 FORMAT(3H C=,1PE20+755X»s3H D=s 1PER0.T)
260 STOPSEND

READY
#RUN #3L INEQ

SOLUTION T@ VECTOR 1

A= =4.9999999E-01 B= 1.9999999E+00
C= ~1«0000000E+00 D= 3.0000000E+00
SOLUTION T@ VECTOR 2

A= “9.9999997E~01 B= 329999998E+00
C= ~2.0000001E+00 = 6+0000000E+00

PROGRAM STOP AT 260
*
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LINSR

This FORTRAN program solves a system of simultaneous linear equations of the form
AX = B, where A is the coefficient matrix and B is the matrix of the right side vectors.

INSTRUCTIONS

Instructions for the format of the input data are generated by the program (see the sample
solution). The order of the A matrix is requested initially then the A matrix is entered
row-wise., The number of B vectors is then requested and the B matrix is entered column-
wise. The program permits input errors to be corrected and generates the instructions
required to make the corrections.

After corrections, if any, have been made, the program computes and prints the solution
for each system accompanied by the error term. The error term is defined as:

N — 2
I» = (b1 -by) 1/2
i=1

Where:

by 1s the ith component of the right side vector input by the user.

by is the ith component of the right side vector computed by using the solution to the system.
After the solution to the system of equations provided by user has been generated, the user
may define a new B matrix to be solved using the original A coefficient matrix.

METHOD

The method used to solve the systems of simultaneous linear equations is the Gaussian
Elimination Method.

RESTRICTIONS

The order of the coefficient A matrix must be less than or equal to 25.
The maximum number of B vectors that can be solved at one time is 10,

NOTE

This program calls the subroutine LINEQ.
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SAMPLE PROBLEM
Solve the following system of simultaneous linear equations:

ZX1 + 3X2 =12 1 3

X, - X2= 5 0-6

The matrix definitions for this system would be:

2 3 X1 121 3
A= X = , and B =

1-1 X2 50-6

SAMPLE SOLUTION

¥RUN LINSRILINEQ

D@ YOU DESIRE USER INSTRUCTIONS, TYPE YES OR NO

= YES

THIS ROUTINE SOLVES A SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS 0OF THE
FORM AX=B. THE METHOD USED IS GAUSSIAN ELIMINATION. A IS THE NAME OF
THE CAEFFICIENT MATRIX ENTERED R@OW-WISE. THE ORDER OF THE SYSTEM,

Ny, CANNGT EXCEED 25.

THE B ARRAY IS A MATRIX @F THE RIGHT HAND SIDE VECTORS ENTERED COLUMN-
WISE. THE PROGRAM SOLVES A SYSTEM OF 10 OR FEWER VECTORSs AFTER WHICH
IT REQUESTS MERE RIGHT HAND SIDE VECTURS.

INPUT FORMAT IS FREE FIELD: EACH NUMBER IS FOLLOWED BY A BLANK OR COMMA.
ACI»J) AND B(I,J) ARE REAL. ORDER AND NUMBER OF VECTORS ARE INTEGER.

FOR EQUATIGNS kX1 + THX2 + «5%X3 = 10 4

~2%X] + + 10%X3 = 5 2
1RX1 +.3%X2 + 17kX3 = 2 .4

INPUT IS AS FOLLOWS:

ORDER=3

AC1s 10230570505

AC2,1)==205065100

AC3s 10510 =3eE~1517

NUMBER OF RIGHT VECTORS=2

BCls1)=210e55:520

B(1s2)54e520404

N@W YOU TRY IT

ORDER

AC 1,1

= 20230

AC 251D

= lesla

ANY CURRECTIONS, TYPE YES OR NO
= YES
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TYPE ROWs, COLUMN, AND CORRECTED ELEMENT
E«Ge~TQ CORRECT AC10,3)215.5 TYPE 1053515

= 252910

ANY CORRECTI@NS., TYPE YES OR NO
= NG

NUMBER OF RIGHT VECTORS

= 3

BCls, 13

= 126550

B(ls 23

= 1500

BCl: 3

= 3esbe

ANY CORRECTIONS, TYPE YES OR NO
= YES

TYPE ROW, COLUMN, AND CORRECTED ELEMENT

= 353s-60
ILLEGAL SUBSCRIPT, 1 @GR J GREATER THAN N TRY AGAIN

= 253s=60
ANY CORRECTIONS, TYPE YES GR NO
= N@
SOLUTIGN
0 54000000E+01
0+« 40000000E+00
THE RELATIVE ERRG@GR IS 0.10252311E-07

SOLUTION
0.20000000E+00
0.20000000E+00
THE RELATIVE ERROR IS 0« 18626451E-08

SOLUTIGN
~0+30000000E+01
0+30000000E+01

THE RELATIVE ERROR IS 0.

THE COEFFICIENT MATRIX HAS BEEN SAVED. DO YOU HAVE ANY MORE
RIGHT HAND VECTORS TO S@LVE. TYPE YES OR NO
= N@

PROGRAM STEP AT O
*
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MTALG-1

This FORTRAN subroutine finds the product of two polynomials.

INSTRUCTIONS

The calling sequence for the entry MTALG is:

CALL MTALG(A,NA,B,NB,C)

where,
%
®
8
®

A is the name ot the multiplicand coefficient array.
NA is the degree of the multiplicand polynomial.

B is the name of the multiplier coefficient array.
NB is the degree of the multiplier polynomial.

C is the name of the product coefficient array.

All polynomial coefficients are stored constant term first.

RESTRICTION

Neither NA nor NB may exceed 25.

SAMPLE PROBLEM

Find the product of the polynomial X2

MA-T1

- 3 multiplied by the polynomial X5 + 2X-5.
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SAMPLE SOLUTION

LIST
010 DIMENSION A(3)»B(6)»C(8)

020 AC1)2-3.0

030 B(1)=-5.0

040 B(2)%2.0

050 B(3)=0.0) B(4)20.03 B(5)=0.03 A(2)=0.0

060 B(6)=1.05 AC3)®1.0

070 CALL MTALG(A,2,B55,C)

080 PRINT 10

090 10 FORMAT(/21H PR@DUCT CREFFICIENTS)

100 DO 15 1=1,8

110 M=i=1

120 15 PRINT 20s MsCCD)

130 20 FORMAT(/19H COEFFICIFNT @F X##,12,1Xs E20+7)
140 STOP

150  END

READY

#*RUN #*3MTAL G

PR@GDUCT COEFFICIENTS

COEFFICIENT @F X#% 0 0+1500000E+02
COEFFICIENT OF X%w | =0« 6000000E+01
COEFFICIENT OF X%x 2 =0+5000000E+01
CAEFFICIENT @F Xw% 3 0.2000000E+01
COEFFICIENT OF X%% 4 O

COEFFICIENT @F X&x 5 =0+300000CE+0O1
COEFFICIENT OF X% 6 0

COEFFICIENT OF X&kx 7 0:1000000E+01

PROGRAM STOP AT 140

#
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MTINV

This FORTRAN subprogram inverts a matrix and/or solves linear systems by standard
elimination.

INSTRUCTIONS

The calling sequence is as follows:

CALL MTINV (A, NR, NC, IDIM, LABEL)

where:
A = gingle precision matrix array
NR = number of rows
NC = number of columns
IDIM = first dimension of A, i.e., A(IDIM, T)
LABEL = scratch array containing at least NR cells.

The routine will invert the NR x NR matrix A in place, and will treat any additional columns
as right-hand sides of a system. The solutions will be returned in the corresponding
columns,

RESTRICTION

The determinant of A must not be zero.

SAMPLE PROBLEM

Invert the matrix

1 -2 3 4
13 -1 2 s
A=l 4 5 1
4 2 -1 3

and also solve the systems
Ax =(1 0 0 O)F
and

Ax = (1 1 1 1)T
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SAMPLE SOLUTION

10 DIMENSIGN AC10s, 102,LABELCIO)
20 PRINT:"SIZE OF MATRIX"SREAD:IDIM
30 PRINTs"MATRIX BY ROWS®™
40 READSCCACTJYsdm i, IDIMI» I=1,1DIM)
50 PRINT:™# 0F RHS"

60 READIKRHS

70 IEND=IDIM#KRHS

80 IF(KRHS.LE.Q)GZ TO 1
90 PRINTs"ENTER RHS°®S"™

ISTR=IDIM+

170
180 STAPs END
READY

*RUN_ #3MTINV
STZE OF MATRIX
= 4

MATRIX BY ROWS

s 3 -1 2 5

= 2 4 =5 1
=4 e -1 3

# OF RHMS

= 2

ENTER RHS'S

= 1. 000

= 1 1 1 1
INVERTED MATRIX

= 1.2000000E+00

2+ 2000000E+00

1+ 4000000E+00

6. 0000000E-01
RHS'S

-1.2000000E+00

~4.9999999E~01

PROGRAM STOP AT
*

1o 1000000E+ Q0
«2¢ 6000000E+00
=1 TOO0000E+0O
=3, 0000000E~01

2,2000000E+00
9.9999996E~01

180

READ2 CCACJ»1)5J=15IDIMIs I=ISTR, TEND)
I CALL MTINVCA,IDIMsIEND, 10,LABEL)
PRINT:"INVERTED MATRIX™
PRINTS CCACI U)o J=1,1DIM)» I=1, IDIM)
IF(KRHS.LE.0)YSTAP
PRINT: "RHS*S"
PRINT:CCACI s 131, iDIM)s E=ISTR, 1 END)

=2+ 5000000E~01
0.

=20 5000000E~-01
2¢ 5000000E~01

1. 4000000E+ 00
40999999 7E-01

MA-"T4

=1+ 5000000E~01
1+ 4000000E+ Q0O
1. 0500000E+00
=5, 0000002E~02

6+ 0000000E~01
469999999 E-01

MTINV-2
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MTMPY

This FORTRAN subroutine evaluates the product of two matrices.

INSTRUCTIONS
The calling sequence for this subprogram is:

CALL MTMPY (IND,A,B,C,L,M,N)

where,
IND DESCRIPTION INDICES EXAMPLE

0 AxB=C L,M A(L,M) x B(M,N) = C(L,N)
ATxB=C -L,M AT(L,M) x B(M,N) = C(L,N)
AxBTY =C L,-M A(L,M) x BL(M,N) = C(L,N)
AT« BT = ¢ -L,-M AT(L,M) x BY(M,N) = C(L,N)

1 D[A] x D[] =C L,L D[A(L,L)] x D[B(L,L)] = D[C(L,L)]

2 D[A] xB=C L,M D[A(L,L)] x B(L,M) = C(L,M)
D[A] x BT = ¢ L,-M D[A(L,L)] x BT(L,M) = C(L,M)

3 AxDI[B] =C L,M A(L,M) x D[B(M,M)] = C(L,M)
ATxDp[H =c -L,M AT(L,M) x D[BM,M)] = C(L,M)

# A is the name of the multiplicand matrix.
® B is the name of the multiplier matrix.

® C is the name of the product matrix.

® L, M, and N are as shown above.

To transpose a matrix, L and/or M must be input as negative values.

AT means the transpose of A.

D [A] means the diagonal of A.

RESTRICTIONS

The first dimension of the A, B, and C arrays must be 25,i.e., A(25,1), B(25,J), C(25,K).

Fach matrix has a maximum of 25 rows.
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For the following cases, the matrices are restricted to a maximum of 25 columns.

IND INDICES
0 -L,M
0 -L,-M
2 L,-M
3 -L,M

MATRIX

A
Aand B
B
A

SAMPLE PROBLEM

MTMPY-2

Multiply matrix A by the transpose of matrix B. The matrices are defined as follows.

3. 2. L
A=l 2. 1. B=j2. 1. 4,
4. 1. 0. 1. 3. 1.

SAMPLE SOLUTION

®LIST

10 DIMENSION A(255,3),B(25,3),0(25,2)

20 ACls 12=23.03BC1,23=3.0

30 A(2,1)= 103 A(3,2)m1e03AC1,3)81.0IAC2,3)210
40 BC1,19=1.08BC2,2)=1.08BC1%53)=1.0

50 A(3,1354.0B(2,3)24.0

60 Al1,2)=22.08A(2,2)=2.08B(251252.0

70 AC3,33=0.0

80 CALL MTMPY(0,R,B5Cs35-352)

90 PRINT 10

100 10 FORMATC®™ MATRIX * TRANSPOSE MATRIX')
110 D@ 20 I=1,3

120 20 PRINT 30, (CtlisJ)sJd=1,2)
130 30 FORMAT(IP2E20.7)
140 STAP3 END

READY

*RUN %5MTMPY

MATRIX ®  TRANSPOSE MATRIX
1. 0000000E+ 01 1.2000000E+01
8.0000000E+00 8.0000000E+00

7.0000000E+00

PROGRAM ST@P AT 140
*®

9. 0000000E+ 00
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NCOATES

This FORTRAN program evaluates the integral of a function over a closed interval by the
Newton-Coates closed interval method.

METHOD

The user has the choice of using any of the two through ten point Newton-Coates closed
interval formulas including the well known:

Trapezoidal Rule = 2 point
Simpson's Rule = 3 point
3/8 Rule = 4 point
Bode's Rule = b point

If the interval is not broken down into an even number of steps for the particular point
formula used, then an appropriate point formula of lesser degree is used to complete the
last step.

INSTRUCTIONS

To use this program enter data as requested. For more instructions run the program.
NCOATES may also be used as a subroutine, by deleting lines 1 through 999. The calling
sequence for entry NCOATES would then be:

CALL NCOATES (RESULT, VECTOR, NPOINT, NTOT, H)

where,

o RESULT is the name of a real variable which is to receive the value of the
integral.

® VECTOR is a one dimensional array containing the values of the function
at successive internal points.

& NPOINT is an integer variable or constant from 2 to 10 indicating the desired
Newton Coates formula to be used.

e NTOT is an integer number of functional values in VECTOR.

e H is a real variable or constant giving the step size.
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NOTE:

An H-point method should integrate a polynomial of degree up to n + 1, without error,
However, high N-point formulas (NPOINT > 8) are rarely used unless knowledge of
higher order derivatives is known, because the subtractions lead to a loss of accuracy.
For the commonly used Simpson's ?ule the error depends on the fourth derivative of
the function and is given by (tlg?bi‘-) * D4 f (z) for some ¢ in(a, b .

One will also receive more accurate results if the point formula and total number of

points are chosen such that the last step does not have to be completed by a lower
order formula.

SAMPLE PROBLEM

Evaluate the integral from 0 to 1 of sin (X).

SAMPLE SOLUTION

# 10 FUNCTION FUNC (X)
*#20 FUNC = SIN ¢(X)
#30 RETURN

®* 40 END

fROT

NCBATES

WOULD YOU LIKE INSTRUCTIGNS? YES B8R N@

= NG

N-PBINT FORMULA, INPUT N

® 2

NUMBER @F STEPS

= 5

INTEGRATION LIMITS

m (s i

INTEGRAL = 40 5816433E=01
N-P@INT FORMULA, INPUT N

s 3

NUMBER @F STEPS

= 5

INTEGRATION LIMITS

2 0y}

INTEGRAL = 40591 T869E=01
N-POINT FE@RMULA, INPUT N

= 5

NUMBER @F STEPS

= 5

INTEGRATION LIMITS

= (o}

INTEGRAL = 500381 142E=01

N-PBINT FORMULA, INPUT N
CY)

PROGRAM STOP AT S80
*
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NUMINT

This BASIC program evaluates definite integrals using the Gaussian quadrature using ten
values of the integrand.

INSTRUCTIONS
To use this program, enter the integrand as follows:
100 LET Y = A FUNCTION OF X
Then type "RUN"
When RUN has been typed the program will ask for the integration limits:
L, U, N=
Where L = Lower limit
U = Upper limit

N = Number of intervals

If more than one integral of the same function is to be evaluated, provide the limits each
time the question is typed. To end the program, equate the upper and lower limits.

NOTE:

Lines 100 thru 129 can be used to express the function.

SAMPLE PROBLEM
Find the value of the following integral between the limits G to 7. 65 and 7.65 to 1567,

XZ

log 3X dx

To evaluate the integrand, enter the program line:
100 LET Y = X T 2/(LIOG(3*X)/2. 30258509)

The division by 2.30258509 is necessary to convert from natural to common logarithms,
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SAMPLE SOLUTION

#100 LET Y=X¢2/(LBG(34X)/2. 30258509)
HRUN

Ls Us N = 2Qp Teb5s 1

THE INTEGRAL FROM 0 T8 765 = 125. 5347

Lo Us N 3 2765015671

THE INTEGRAL FREM 7.65 T8 1567 = 3.64278 £ 8
Ly Us N =2 20,051

READY
i

MA-80 #DA43



ORTHP-1

ORTHP

This FORTRAN subprogram evaluates an orthogonal polynomial.

INSTRUCTIONS
The calling sequence for the entry ORTHP is:

Y = ORTHP(IND, Z, N)

where,

® Y is the value of the orthogonal polynomial.

® IND is the type of orthogonal polynomial generated-
1. Legendre (of the first kind)
2. Laguerre
3. Hermite
4, Chebychev

® Z is the value of the independent variable.

® N is the degree of the polynomial.

RESTRICTIONS
For orthogonality:

Legendre- 17| less than or equal to 1. O
Laguerre- Z equal to or greater than 0
Hermite- none.

Chebychev- 1Z | less than or equal to 1.0

METHOD
Legendre-

P(0)=1.0
P(1)=2
P(N+1)=((2. 0*N+1. 0)*Z*P(N)-N*P(N- 1))/ (N+1. 0)

Laguerre-
L(0)=1.0
L(1)=1.0-2

L(N+1)=((1. 042. 0*N-Z)*L(N)-N*L(N-1))/(N+1. 0)
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Hermite-

H(0)=1.0
H(1)=2. 0*7
H(N+1)=2. 0*Z*H(N)-2. 0*N*H(N- 1)

Chebychev-

T(0)=1.0
T(1)=2
T(N+1)=2. 0*Z*T(N)-T(N-1

SAMPLE PROBLEM
Find the values of the following:

Legendre polynomial for N=9 and Z=0. 5.
Laguerre polynomial for N=9 and Z=10. 0.
Hermite polynomial for N=3 and Z=1. 0.
Chebychev polynomial for N=5 and Z=0. 6.

6
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SAMPLE SOLUTION

MLIST

110 IND= |

120 2205

i30 N=9

140 Ys@RTHPC(IND2ZsN)

150 PRINT 10sNsZ»Y

160 10 FORMAT(/"™ FOR N="512:" AND Z=",F5.2/"
170& “LEGENDRE POLYNGMIAL IS"s1PE14.6)
180 IND=2

190 Z2=210.0

200 N=z9

210 Y=QRTHPCINDs ZoN)

220 PRINT 20sNsZsY

230 20 FORMAT(/TH FOR N=,12,7H AND Z=,F5.2s/5, 40H

240& LAGUERRE POLYNOMIAL 1S, 1FE14.6)

250 N=3

260 IND=3

265 Zz1.0

270 Y=QRTHPCIND» Z»N)
280 PRINT 30sNsZ0Y

290 30 FORMAT(/7H FOR N=,12,TH AND Zs»F5.25 /5, 3%9H

3004 HERMITE POLYNGMIAL IS, 1PE14.6)

310 IND= 4

320 Z20.6

330 N=S v

340 Y=0RTHPCINDs ZoN)
350 PRINT 40sN,Z»Y

360 40 FORMATC(/TH FOR N=,12s7TH AND Z=,FD5¢2s /5 4lH

370& CHEBYCHEYV POLYNOMIAL IS, 1PE14.6)

380 STOP
390 END
READY

*RUN %3 0RTHF

FOR N= 9 AND Z= 0.50

VALUE OF THE

THE VALUE @F

THE VALUE OF

THE VALUE OF

THE VALUE OF THE LEGENDRE POLYNOMIAL IS -2.678986E-01

FOR N= 9 AND Z=10.00

THE VALUE OF HTE LAGUERRE POLYNOMIAL IS 1.479189E+01

FOR N= 3 AND Z= 1.00

THE VALUE @F THE HERMITE POLYNOMIAL IS -4.000000E+0Q0

FOR N= S AND Z= 0.60

THE VALUE @F THE CHEBYCHEV POLYNBMIAL IS -7.583999E-02

PROGRAM STOP AT 380
*
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PLMLT-1

This FORTRAN subroutine constructs the coefficients of a polynomial from its real
roots.

INSTRUCTIONS
The calling seqﬁence for the entry PLMLT is:

CALL PLMLT(Z,NZ,P)

where,
® Z is the name of the array containing the roots,
® NZ is the number of roots.
@ P is the name of the coefficient array. It is dimensioned at least NZ+1
locations. The coefficients are stored low order first and the coefficient
P(NZ+1)=1.0.

SAMPLE PROBLEM

Construct the coefficients of the polynomial whose factored form is (X-2) (X+2) =0.

SAMPLE SOLUTION

10 DIMENSION P(3),2(2)
20 Z(1)%2.0

30 Z2(2)==2.0

40 NZ=2

50 CALL PLMLT(ZsNZ»P)
60 D@ 10 1%1,3

70 M=1~1

75 10 PRINT 20eM-PC(1)
80 20 FORMATC(/19H COEFFICIENT OF Xk, 2, IPE20.7)
20 STOP3END

READY

*RUN #3PLMLT

COEFFICIENT OF X#* 0 ~4.0000000E+00
COEFFICIENT @F X#% | 0o

COEFFICIENT @F X

N

1.0000000E+00

PROGRAM STOP AT 90
*
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POLRTS

This FORTRAN program finds the roots of polynomials using Bairstow's method.

INSTRUCTIONS

POLRTS is written to allow a 30th degree polynomial. The polynomial itself must be
written in descending powers of the independent variable:

cttic ™y iczic
1 n n

2 +1

In addition, the polynomial :nust have no O roots: that is, the coefficient C must not be 0.
. . . i n+l
If Cm—l is 0, the polynomial must be rewritten as a polynomial of degree m:

m m-1
C1Z + CZZ + ...+ CmZ + Cerl

where m =n-1. If Cm is 0, this must be repeated.

+1
RESTRICTIONS

This routine may not give satisfactory results for certain ill-conditioned polynomials or
polynomials having multiple roots.

SAMPLE PROBLEM
Determine the roots for the following polynomial:

7 6

1.5% " +2.906x% + 10.6x° + 25. 877x % + 2. 3x3 4 33x2 4 1.234X + 543.2 = 0
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SAMPLE SOLUTION

sRUN

ENTER °*NX° THE DEGREE @F THE POLYNOMIAL

= 7

ENTER °NC® AND
THE LIST @F NX+{ COEFFICIENTS
5 B8 15 2.906

‘C* THE NUMBER

106 25.877

1234

@F COEFFICIENTS AND
(DESCENDING)>
2.3 33

543.2

PELYN@MIAL TG BE SOGLVED IS

1+500000E+00X®%7

20 906000E+00X%%6

1«060000E+Q ] Xk%3

2:.58TT00E+0 1 X#k4

2+300000E+00X*#%3

3.300000E+01 X#%2

1.234000E400X

5.432000E+02

ROGBTS ARE AS FOLLOWS

6

7

REAL PORTION

2:137941E-01
2e137941E~01
144§ 992E+00
1 =441 992E+00
=1 .244203E+00
=1 244203E+00

=2+ T60499E+00

IMAGINARY PORTION

2.8T3626E+001

=2.873626E+001

1«153711E+001

~1153711E+001

1756273E+001

“1e756273E+001

Oo

1

D@ YOBU WANT T@ FIND THE ROBOTS OF ANSTHER POLYNOMIAL?

ANSWER | FOR YES OR 0 FOR NGO

=0

PRAGRAM ST@P AT 520

'Y
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POLYC

This FORTRAN subprogram constructs the coefficients of a real polynomial from its real
and/or complex conjugate roots.

INSTRUCTIONS
The calling sequence for the entry POLYC is:

CALL POLYC(R, C, N, A)

where,
® R is the array containing the real roots and/or the real parts of the complex
conjugate pairs.
® C is the array containing the imaginary parts of the complex conjugate pairs,
and zeros corresponding to the real roots.
® N is the number of roots.
® A is the polynomial coefficient array. ‘

RESTRICTIONS
N must be less than or equal to 25.
If there are complex conjugate roots, only one of the conjugates need be input. However,

an adjacent location must be saved for the other conjugate. For example, for the roots
141, 1-1, 3+0I, input is:

(oR=

PEG AP Ay

€3 S s

RN R
i

O WO b=

SAMPLE PROBLEM

Construct the coefficients of the real polynomial whose roots are:

Root 1 = -1-1
Root 2 = -1+1
Root 3 = -1

Root 4 = -1
Root 5 = +1
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SAMPLE SOLUTION

*LIST

10 DIMENSION R(5),C(5),A(6)
20 DATA C/=loslesOes=losrle/sR/~1ss>1es=1630050e/5N/5/
30 CALL POLYC(RsCsN,A)»

40 DO 10 I=tg

50 10 PRINT 2051I-1,ACID)
60 20 FORMAT("“OCOEFFICIENT OF X**"»12,1PE20.7)

70 STOP3END

READY

»6

*RUN *3POLYC

COEFFICIENT
COEFFICIENT
COEFFICIENT
COEFFICIENT
COEFFICIENT

COEFFICIENT

OF

gF

OF

QF

OF

OF

X % %
X
Xk k
Xk ok
X ok A

Kokt

PRO GRAM STOP AT 70

*

2.0000000E+00
4.0000000E+00
5.0000000E+00
5,.0000000E+00
2+,0000000E+00

0.0000N00E+00
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POLYV

This FORTRAN subroutine evaluates a real polynomial with a complex argument ex-
pressed in either polar or Cartesian coordinates.
INSTRUCTIONS
The calling sequence for the entry POLYV is:
CALL POLYV(N,A,RHO,PHI,IND,R,C)
where,
® N is the degree of the polynomial.

@ A is the polynomial coefficient array with the coefficients entered low
order first.

® RHO is the length of the radius vector in polar coordinates, the real
part of the Cartesian argument.

] PHI is the polar angle in radians for polar coordinates, the imaginary
part of the Cartesian argument.

@ IND determines the coordinate system.

IND=0 polar coordinates
IND=1 Cartesian coordinates

8 R is the value of the real part of the polynomial evaluation.

® C is the value of the imaginary part of the polynomial evaluation.

SAMPLE PROBLEM

Evaluate the following polynomial for a complex argument whose polar coordinates are
length of radius vector = 2.0 and polar angle = 0.0 radians:

xbixt %% _10-0
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SAMPLE SOLUTION

10 DIMENSION A(T)

20 ACl1)==103AC3)=~]1.0

30 A(S)I=103ACTI=1.0

40 A(2)=0.03A(4)80.08AC6)=0.0

50 N=6

60 INDO=0

10 CALL POLYVIN,A»2.05000sINDsR»C)
80 PRINT 10, R

90 PRINT 20, C

100 10 FORMAT(/23H VALUE QF THE REAL PART,1PE25.7)
110 20 FORMAT(/28H VALUE OF THE IMAGINARY PART, 1PE20.7)
120 STBPSEND

READY

*RUN *3POLYV

VALUE OF THE REAL PART T.4999996E+01
VALUE OF THE IMAGINARY PART [

PRAGRAM STOP AT 120
*
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QUADEQ

This BASIC program finds the solution to quadratic equations.

INSTRUCTIONS

To use this program, provide the coefficients of the quadratic equation per the standard
mathematical form,

ax2+bx+c =0

when requested by the program.

SAMPLE PROBLEM

Solve the equations:

) 3x°4x4+5 =0

2) X% i4x-6=0

3)  1E25 x2 - 2E28x + 1E25 = 0

SAMPLE SOLUTION
*RUN

QUADEQ
1 SOLVE THE QUADRATIC EQ. AxXkX+B%xX+C=0
INPUT AB,C 235155

COMPLEX ROOTS: -.1666667 (+ AND =) 1280191 I

MORE EO'S T@ SOLVE (1=YES, 0=NO) 21
INPUT A»BsC ?1s45-6

REAL ROOTS: -5.162278 AND 1.162278

MRE EQ'S T@ SOLVE (1=YESs 0=NO) 2?1

INPUT A>B,C ?1E25,-2E28, 1E25

REAL ROOTS: 19992.999 AND «0005

MORE EO'S TO SOLVE (1=YES, 0=NO@) 20

READY
*
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RKPBX

This FORTRAN subprogram contains two routines, RKPB1 and RKPB2 to integrate systems
of first-order ordinary differential equations by the fourth-order Runge-Kutta method.

INSTRUCTIONS
There are two entries to this subprogram. They are:
CALL RKPB1(DERIV, TEMP,X,DX,Y,F,N)
CALL RKPB2(DERIV, TEMP,X,DX,Y, F,N)
where,
e DERIV is the name of the routine which computes values for the derivatives given
values for the independent variable and the dependent variables. An external

statement must be entered to define DERIV, as shown in the Sample Problem.

© TEMP is the name of an array containing at least 4*(N+1) locations which must not
be used for any other purpose while the integration is being performed.

e X is the value of the independent variable.

e DX is the value of the independent increment.

® Y is the name of the array coritaining the dependent variables.
e [ is the name of the array containing the dependent derivatives.

e N is the number of dependent variables.

METHOD*

RKPB1 will compute the derivatives and store the functions and derivatives at each step of
the integration. RKPB2 will integrate to the next step. The values of the functions and de-
rivatives at the next step will be stored. However, the integration may be repeated with an
adjusted increment. The integration step will be made permanent only by calling RKPB1,

The routine is designed only to perform the integration of differential equations. Provision

for output, termination of the integration, and adjustment of the increment must be made by
the user. Generally, the output and termination should be done between RKPB1 and RKPB2,
and adjustment of the increment after RKPB2,

* Hildebrand, F.B., Introduction to Numerical Analysis, McGraw-Hill, New York, 1956,
Section 6, 16.5-6,
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SAMPLE

PROBLEM

Integrate the following system of equations:

DX/DT =Y
DY/DT = 4X
DZ/DT = 2Z

RKPBX-2

From T =0, toT = 2. where X =0., Y =2, and Z = 1. at T = 0. Use an interval of inte-

gration DT =
sary to accomplish this may be as foll

., 0625 and print T,X,Y and Z for every integration step. The program neces-
ows, where symbolically in the programs: U(1) is

used for X, U(2) is used for Y, and U(3) is used for Z. The derivatives of X, Y and Z are
referred to as F(1), F(2) and F(3), respectively.

SAMPLE SOLUTION

10 EXTERNAL DERIV

20 COMMBN UC3)», FC3)

30 DIMENSION TEMP(16)

40 T=0.03 DT=.06253 N=3

50 UC1)=0.03 U(2)=2.03 U(3)=1.038 TF=2.0
60 PRINT 1

70 1 FORMAT(/8X> 1HTs» 13Xs 1HX» 13Xs 1HY» 13X, 1HZ)
80 10 CALL RKPBIC(DERIVs TEMP, T» DT, Us FoN)

90 PRINT 1S5»,Ts»U

100 15 FBRMATC(IH A4E14.6)

i1

0 IF (T-TF) 20,30, 30

12

0 20 CALL RKPB2(DERIV, TEMP» T» DT» Us FsN)

13

0 Gg T@ 10

140 30 ST@P

15
16

0 END

OC DERIVATIVE EVALUATION SUBROUTINE

z
0. 100000E+ Ot
0. 113315E+01

170 SUBROUTINE DERIV
180 COMMON UC3), F(3)
190 FC1)=UC2)3 F(2)=-4.%UC1)3 F(3)=2.%U(3)
200 RETURN
210 END
READY
* RUN_ 3 RKPBX
T X Y
0. 0. 0.200000E+01
0+625000E-01 0.124674E+00 0. 198440E+01
0. 125000E+00 0.247403E+00 0.193782E+01

0. 187500E+00
0.250000E+00
0.312500E+00
0+ 375000E+00
0+437500E+00
0. 500000E+00
0.562500E+00
0. 625000E+00
0. 687500E+00
0. 750000E+00

0.366272E+00
0+ 479 425E+ 00
0e 58509 6E+00
0.681638E+00
0« T767542E+00
0.841470E+00
0.902266E+00
0694898 4E+00
0.980892E+00
099 749 4E+ 00

0. 186102E+01
0. 17551 7TE+01
0:162193E+01
0+ 146338E+01
0.128200E+01
0 108061E+01
0-.862357E+00
0« 630649 E+00
0-.389101E+00
0. 141480E+00

MA-93

0« 128 402E+01
0o 1 45499 E+01
0. 1648 T2E+0 1
0. 186824E+01
0.211700E+01
0.239887E+01
0.271828E+01
0. 308021E+01
0.349033E+01
0.395507E+01
0. 448 168E+01
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PRBGRAM STOP AT

o

0.812500E+00
0-875000E+00
0:937500E+00
0« 100000E+0D1
0. 106250E+01
0. 1 12500E+01
0. 118750E+01
0. 125000E+01
0.131250E+01
0. 137500E+01
0« 143750E+01
0+ 150000L+01
0. 156250E+01
0-162500E+01
06 168750E+01
0« 175000E+01
0. 181250E+01
0. 187500E+01
0e193750E+01
0.200000E+01

0.998531E+00
0.983986E+00
0.954086E+00
0.909299E+00
0.850322E+00
0. TTBOT6E+ Q0
0.693688E+00
00 598476E+00
0. 493925E+00
0.381666E+00
0:.263451E+00
0. 141126E+00
0 165982E=01
=0 108189E+00
~0.231287E+00
=0e 350 TT6E+ 00
=0 464792E+00
«0e571555E+00
=00 669398E+00
=00 75679 7TE+00

140

-0+ 108348E+00
~0.356485E+ 00
-0¢599060E+00
~0.832286E+ 00
~0.105252E4+01
=0.125634E+01
~0.144055E+01
=00 160228E+01
~0.173901E401
=0+ 1848 60E+01
«00 192934E+ 01
~0.19 T998E+01
-0. 1999 72E+01
~0.198826E+01
“0e194577E+ 01
-0.187292E4+01
=00 17708 4E+01
<0.164113E+01
~0.148580E+01
«0.130730E+01

MA-94

0. 5078 40E+0 1
0:575458E+01
0. 652080E+01
0. T38903E+01
0.837286E+01
0948 TTOE+O1
0« 107510E+082
0. 121824E+02
00 138045E+02
0. 156426E+082
0.177253E+02
0. 200854E+082
0. 227598E+02
0.257902E+02
0. 292241E+02
0.331152E+02
0. 375245E+02
0. 425208E+02
0. 48 1823E+02
0. 5459 TTE+ 02
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ROMBINT

This FORTRAN program performs Romberg integration. The subroutine ROMINT may
also be easily extracted.

INSTRUCTIONS

The program integrates the Function F(X) between the limits XO and XF, subdividing the
interval enough to meet the input error criteria EPS.

The function subprogram F(X) should be typed in starting at line number 1000, For
example:

1000 FUNCTION F(X)
1010 F = 3.4 + X**2 + COS(X)

1020 RETURN
1030 END

The program requests the values XO, XF, and EPS at run time.

The program outputs:

1

INT value of the integral,
ERR = estimated error,

EPS = input error criteria,

X0O,XF = integration limits,

NEVAL = number of function evaluations,
NEXTR =

number of Romberg extrapolations.
The program will continue asking for new values of XO, XF, and EPS until an EPS =< 0 is
input.
The subroutine version of the program may be obtained by typing
LIB ROMBINT (100, 999)
The calling sequence for the subroutine entry is:

CALL ROMINT(VAL, ERR, EPS, A, B, N, MAXE)

where:
VAL = value of the integral
EPS = input error limit
N = number of function evaluations performed.
ERR = error estimate
A B = interval ends
MAXE = limit on the number of extrapolations to be performed.

SAMPLE PROBLEM

-4
Find [1 (3.4 + X2 + Cos X) dX with EPS = 10

"0
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ROMBINT-2

SAMPLE SOLUTION

#1000 FUNCTI@N F(X)
¥1010 F = 3.4 + X*k%2 + COS(X)
#1020 RETURN

*1030 END

*RON

ROMBINT

X0s XFsEPS

= 0s15.0001

NAMEL IST auT

INT 0.45748041E 01
ERR 0e44T703484E-06
EPS 0+10000000E~03
pt%} 0.

XF 0.10000000E 01
NEVAL 9
NEXTR 2

X XF»EPS

= 05050

PROGRAM STOP AT 29
*

MA-96 #DA43



ROOTER-1

ROOTER

This BASIC program finds the roots of a polynomial with real coefficients.

INSTRUCTIONS
Enter data in the following format:
10 DATA N, A(N), A(N-1),...,A(1), A(0)
where,
N is the order of the polynomial.
A(N), A(N-1),...,A(1), A(0) are the polynomial coefficients in descending order.
More than one data line may be used to supply coefficients for one polynomial; additional

polynomials may be solved on a single run by supplying data for them on subsequent data
lines--not beyond Line 299.

There are a few types of polynomials which this program is unable to solye. The program
will so indicate and go on to the next case.

If the program does not converge on a root within 25 iterations, a message to that effect
will be printed. The program then provides the option of continuing the iteration or
stopping. If the iteration is continued, the program will print a message every 25
additional iterations until the root is found or the program is stopped. If a root is not
obtained after 100 iterations, it is recommended that another method be used to solve
the polynomial.

METHOD
Bairstow's method is used!'.

SAMPLE PROBLEM

Determine the roots for the following 3 polynomials:

6+ 3X =0
5.6X+ X% =0
4 - 7X? 43K =0

1

Hamming, R. W., Numerical Methods For Scientists And Engineers, McGraw Hill
Book Co., New York, 1967, Pages 356-359.
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ROOTER-2
SAMPLE SOLUTION
Note the following:
All 3 polynomials are solved in one run.
Each set of coefficients must be preceded by the order of the polynomial.
The coefficients must be entered in descending order,

ROOTER gives erroneous results for double imaginary roots.

%10 DATA 1,356

*11 DATA 251655
#12 DATA 35307500 4
# RUN

ROGTER

PBLYNOMIAL NUMBER 1 IS @F BRDER 1

COEFFICIENTS (IN DESCENDING GRDER) AREs
3 &
THE ROOT 1S:

-2

PBLYNOMIAL NUMBER 2 IS5 OF ORDER 2

COEFFICIENTS C(IN DESCENDING BRDER) ARE:
i -6 5
THE R@OTS ARE:

S AND 1

POLYNBMI AL, NUMBER 3 IS CF URDER 3

COEFFICIENTS (IN DESCENDING @RDER) AREs
3 -7 d 4
THE R@@TS ARE:

2
1 AND =0 6666667

READY -

MA-98 #DA43



SECANT-1

SECANT

This FORTRAN subroutine uses the secant method to solve the nonlinear system of equations
F(X) = 0 where F and X are N dimensional vectors.

METHOD

A
The vector f has as its components the N functions of N variables fl,fz. . .fN. The user
enters an initial guess QT = (X4,Xq,. . ..X,) from which N other vectors are determined by

altering each element of X indeépendently. Each function f.1 is then evaluated at each of the

N+1 points. These points determine a plane for each function. In order for the method

to converge each plane must intersect all others as well as the identically zero plane.

The common intersection in the zero plane yields a new estimate of the solution vector.
The method fails when two planes become nearly parallel as the iterative method proceeds,
or if a plane becomes nearly parallel to the zero plane. This is the cause of IERR=1. A

measure of the size of the vector /f\(;b is defined by || ?(;(\)H o = miax | fi(g\()l . The vector
Qn+1 obtained on the (n+l)th iteration is taken as the solution if || ;\(n»rl - Qn” _scc.
During the course of the iterative procedure the routine will remember the vector of inde-
pendent variables & for which FM = || R8) Il _ was least over all &'s tried. If the routine

fails for some reason (IERR#0), the user may want to re-enter with /s\ as the initial estimate.

INSTRUCTIONS
This routine cails the routine MTINV which must be executed jointly with this program.
The calling sequence is:

CALL SECANT(N.NLCC,FM,X,F,Q,Z,8,G,Y,IDIM,EVAL,IERR)

where,

@ N is the order of the system of nonlinear equations.

® NI is the maximum number of iterations.

® CC is a convergence criterion, for example 10-6.

AN

® FM is the norm of the vector f(x) calculated internally.

® X 1is the one dimensional array which contains the initial guess to the solution
vector for input and, if IERR=C or 2. the solution vector for output. The initial
guess vector cannot be the zero vector. The components of the initial guess
vector are stored in X(1)...X(N) respectively. X must be dimensioned X(M)

A

where M. GE.N+1. (X corresponds to the X vector.)

® F is the one dimensional array which contains the N functions evaluated for the
X vector. F must be dimensioned F(M) where M. GE. N+1. (F corresponds to

A

the { vector.

® Q is a one dimensional array used internally. Q must be dimensioned Q(M).

where M. GE. N+1.
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® Z is a one dimensional array which contains the latest estimate of the solution
vector if IERR=1. Z must be dimensioned Z(M) where M.GE. N+1.

e S is a one dimensional array used internally. S must be dimensioned S(M),
where M. GE. N+1.

® G is a two dimensional array used internally. G must be dimensioned
G(IDIM, M), where M.GE.N+1,

® Y is a two dimensional array used internally. Y must be dimensioned
Y(IDIM, M), where M. GE. N+1.

® IDIM is the first dimension of the G and Y arrays. IDIM. GE.N+1,
AA
@ EVAL is a subroutine supplied by the user to evaluate f(x). It is of the form:
SUBROUTINE EVAL(F,X)
where F and X are as defined above.
@ IERR is returned as follows:
IERR=0. Normal return
X contains the solution vector.
F contains the function vector.
IERR=1 Matrix inversion has deteriorated.
7, contains the solution vector.
F contains the function vector.
IERR=2 Maximum number of iterations has been exceeded.

X contains the solution vector.
F contains the function vector.

SAMPLE PROBLEM

Solve the system:

FI(X> =-2 + X, X,
X

Fy(X) = 1-X,

2

starting with an initial guess of (1,-1). The solution is (1,1).
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SAMPLE SOLUTION

010 DIMENSIGN X(3),F(3),0(3)52(3),5(3)5,6(3,3)5Y¢3,3)
020 EXTERNAL EVAL

030 XC1>=1.

040 X(2)==1.

050 N=2

060 NI=10

070 CC=1.E~6

080 CALL SECANT(N,NI,CCsFMsX,F, Q57555 GsYs 35 EVAL, I ERR)
090 IFCIEFF.EQ.1)G6 T@ 100

100 IFC(IERR.EQ.2)G8 T@ 200

110 PRINT:"N@RMAL RETURN"

120 PRINT 600

130 PRINTSC¢XCI),Ix1,N)

140 PRINT 700

150 PRINTSCFCId, I=1,N)

160 G@ T@ 800

170 100 PRINT:"MATRIX INVERSION HAD DLTERI@GRATED"
180 PRINT 600

190 PRINTS$(CZCI)»I=1sN3

200 PRINT 700

210 PRINT:C(FCIY,1=515N)

220 G@ 10 800

230 200 PRINT:"MAXIMUM NUMBER @F ITERATIONS EXCEEDED"™
240 PRINT 600

250 PRINTS(XCI)oI=isN)

260 PRINT 700

270 PRINTSCFCIYsI=1,N)

280 600 FBRMAT(//° SOLUTION VECT@R™//)

290 700 F@RMAT(//" FUNCTIGN VECTOR /73

300 800 STOP3SEND

310 SUBRBUTINE EVALCF,X)

320 DIMENSIGN X(3),F(3)

330 FCID==0.+(XC(1)+XC2))

340 F(2)=1o~XC13%X(2)

350 RETURN

360 END

READY

*RUN %3 SECANTSMTINY

N@RMAL RETURN

SOLUTIGN VECTOR

9+999997T5E~-01 1. 0000002E+00

FUNCTION VECTOR

~2.2351742E-08 2235179 TE~ 08

PROGRAM ST@GP AT 300

*
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SIMEQN

This BASIC program solves sets of simultaneous linear equations with N unknowns.

NOTE:
The algorithm used may result in excessive running time for large problems,
INSTRUCTIONS

To use this program enter coefficients in the equations in data statements, starting in state-
ment 11 with the first coefficient of the first equation, and ending with the N TH

coefficient of the N-TH equation. All zero coefficients must be entered in their proper place,
The right-side constant terms of the equations are then entered in subsequent data statements.
If additional cases with the same coefficient matrix but different right sides are to be run,
they may all be run at once by simply entering additional data statements with the right-side
values of the other cases. A data statement at line 10 [ preceding all the above] is used to
specify the number of systems to be solved, and the number of equations [and hence
variables] in the system. Thus, the two systems:

3X + 5Y - 22 = 9 3X + 5Y - 2Z =19
7X + Y = -3 7X + ¥ + -3
X - 7Y + 92 = 14 X~ 7Y + 92 = 8

Could be solved by typing:
10 DATA 2,3
11 DATA 3,5,-2,7,1,0,1,-7,9
12 DATA 9,-3,14,19,-3,8
RUN

Solutions are proofed by multiplying the vector by the original coefficient matrix.

Additional instructions may be found in the listing.

SAMPLE PROBLEM

Solve the following sets of simultaneous equations:

25W -2.7X +38.7Y + Z = 115.76 10

18X - 5.8Y - 32 = 11.5 20
6W + 99X + 18Y = 55 30
11w + 87Y +4127 = 17 40

The extreme right-hand column of numbers is a second set of right-hand values.

To use this program to solve the two sets, prepare the following data tape:

10 DATA 2,4

11 DATA 25, -2.7,38.7, 1,0, 18, -5.8, -3

12 DATA 6, 9, 18, 0, 11, 0, 87, 41

13 DATA 115.76, 11.5, 55, 17, 10, 20, 30, 40
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In line 10, the 2 means two sets of equations and the 4 means each set consists of four
equations. In the 11 and 12 lines, the 0's are necessary to represent any missing (zero

coefficient) terms in the set.

NOTE:

The answers for the first set would be read thus:

W
X

L]

1.25315 Y = 2.34878
Z

.578122 ==4.,90557

Line 13 contains the right-hand values for both sets.

The proof lines merely use the calculated values to evaluate the left-hand side of each
equation to prove that they give the right-hand value.

SAMPLE SOLUTION

*10 DATA

25 4

*11 DATA

25, =275 3BeTs 15 0s 18p =5.8, -3

*12 DATA 6 9, 18, 0, 11, O0» B7» 41
*13 DATA 115.76, 11.55 55, 17s 10s 20, 30, 40
* RUN
SIMEQN
SOLUTIBN FOR LINEAR SYSTEM @F @RDER 4
INDEX:
1 2 3
S@LUTION VECTOR FOR CASKE 1
1253154 0.5781224 2.348776
PROOF OF SOLUTION FOR CASE 1
115. 76 11.5 595
SOLUTION VECTOR FOBR CASE 2
1951556 1 30B704 1.662833
PROBF OF SOLUTION F@R CASE 2
9.999999 20 30
READY
*
MA-103
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SOLN

This FORTRAN function finds a zero of an arbitrary function.

INSTRUCTIONS
The calling sequence for the entry SOLN is:

X = SOLN(IND,FUNC, BOT,TOP,EPS,IERR)
where,

® X is the zero

IND = 1 the convergence test is absolute.
IND = 2 the convergence test is relative.

® FUNC is the name of the user defined function subprogram of the form Y = FUNC(X).
FUNC must be defined by an external statement as shown in the Sample Problem.

® BOT is the lower bound of the independent variable.

® TOP is the upper bound of the independent variable.

® EPS is the convergence criterion.

® IERR is an error indicator as follows:
IERR =0 Satisfied criterion for type of convergence desired.
IERR =1 Could not bracket a root before mesh size became too small.
IERR =2 A root was bracketed but the maximum number of iterations

was exceeded before the absolute convergence criterion was

satisfied.

IERR =3 A root was bracketed.
Maximum number of iterations was exceeded.
Relative convergence criterion could not be applied.

Absolute convergence criterion was satisfied.

B DO

1
NS

IERR A root was bracketed.
Maximum number of iterations was exceeded.
Relative convergence criterion could not be applied.

Absolute convergence criterion was not satisfied.

Lo DN

it
H
s

IERR EPS not positive.

i
i
w

IERR A root was bracketed.
Maximum number of iterations was exceeded.
Relative convergence criterion could not be applied.

Absolute convergence criterion was satisfied.

O DN
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IERR = -4 1. A root was bracketed.
2. Maximum number of iterations was exceeded.
3. Neither convergence criterion was satisfied.

RESTRICTION

Maximum number of iterations is 100.

METHOD

The zero is bracketed, i.e., function positive on the side, negative on other, whereupon
the interval having technique is used.

If possible, TOP and BOT should bracket the zero as indicated above to avoid the search
for bracketing values. If no zero can be detected between BOT and TOP, the routine FUNC
is evaluated either 100 times, or (TOP-BOT)/EPS times--whichever is less.

SAMPLE PROBLEM

Find the zero of the function X2 - 4 between the limits 0. and 5.0. Since the zero (+2.0)
is between these limits, use an absolute convergence test of EPS = 0,001.

SAMPLE SOLUTION

Q10 EXTERNAL FUNC

020 1ERR=0

030 IND=13 FPS=.001

040 X=SOLNCINDs FUNC20e» 50, FPS» IERR)
050 IFCIERR)Y 15251

060 I PRINTg * ERRGR NUMBER®, IERR

070 ST@pP

080 2 PRINTs “ THE FUNCTI@ON HAS A ZER@ AT X =", X
090 STOP3 END

100 FUNCTION FUNC(X)

110 FUNC=X%X=4.

120 RETURN3 END

READY

*RUN *3SOLN
THE FUNCTION HAS A ZERZ AT X = 2-,0002747E+00

PROGRAM STOP AT 90
*
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SPEIG1

This FORTRAN subroutine finds the eigenvalues and eigenvectors of a real non-symmetric
matrix which can be expressed as a product of two symmetric matrices, one of which must
be positive definite.

INSTRUCTIONS
The calling sequence is:

CALL SPEIG1 (IND,A,B,N,TEMP1,TEMP2,C)

where,
® IND determines which of four special eigenproblems is to be solved for the
eigenvector matrix X, and the diagonal eigenvalue matrix J:
IND =1 The routine solves ABX=XJ
IND =2 The routine solves BAX=XJ
IND =3 The routine solves AX=BXJ
IND =4 The routine solves BX=AXJ
® A is the name of the positive definite matrix, i.e., the eigenvalues of A must
be positive. If A is not positive definite, the routine sets IND to -1 and re-
turns control to the calling program.
® B is the name of the real symmetric matrix which may or may not be positive
definite.
® N is the order of the A and B matrices.
® TEMP1 and TEMP2 are arrays used for internal storage, each containing at
least N locations.
® C is the name of a double dimension array used by the routine for storage

purposes. Dimensions are the same as for A and B.
RESTRICTIONS
The order of the matrices must not exceed 15.

The first dimension of A, B, and C must be 15.

The subroutine EIG1 must be included in the RUN statement.

METHOD

The diagonal matrix J is stored in the diagonal elements of the A matrix, thus destroying
the original positive definite matrix. The eigenvector matrix X is stored columnwise in B,
thus destroying the original real symmetric matrix.
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SAMPLE PROBLEM

Find the eigenvalues and eigenvectors of the matrix C which is the product of the real sym-
metric matrices A and B, in that order (IND = 1).

A and B are defined as:

4. 2. 1. 1. -1, -1,
A= {2 4. 2. B={-1, 2, 4,
1. 2. 4, -1, 4, 6./

SAMPLE SOLUTION

010 DIMENSION AC15537,BCi5,33,UC1553),TEMPI(3)»TEMP2(3)
020 ACls1)m4003 A(2,2)84003 A(353)84.03 B(3:2)54.0

030 B(2,3)=4-03 A(1,2)=2.08 A(2,1)=22.03 A(3,2)=2.0

040 B(2,2)32.08 A(3,1)%1.05 AC1233%1.08 BCls1)=1e0

0350 B(2,1)=~1.05 B(3al3n~103 B{ls2)u=1.08 B(ls3)m=j.0
060 AlR,3)I82.03 B(3,3)8640

070 CALL SPEIGI(15A»Bs3,TEMP1.TEMP2,U)

080 DO 10 I=1,3

090 PRINT 20,1,AC1s3%)

100 10 PRINT 30,1, (BCJs1)sJ=153)
110 20 FORMAT(/1iH EIGENVALUE» 1251 XsE20+7)
120 30 FORMATC(TH VECTOR,I2,1Xs3E15.4)

130 STOP
140 END
READY

#*RUN *3SPEIGIIEIGH

EIGENVALUE 1 0.249T765TE+0
VECTOR 1 0. 180873E+01 0.1 74069E+00 0.201258E+00
EIGENVALUE 2 0.4478955E+02
VECTOR 2 0:566109E+00 0.150982E+01 G« 1BT504E+01
EIGENVALUE 3 «0e1287220E+01
VECTOR 3 ~0+638T68E+00 =~0.130006E+01 06 666124E400

PROGRAM STOGP AT 130
*
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STIRLING

This FORTRAN program consists of a subroutine and a driver program that calculates

factorials of positive integers using Stirling's approximation. The subroutine FCTRL may
also be easily extracted.

INSTRUCTIONS

To use the freestanding program type RUN. When requested, enter the integer whose
factorial is desired. If the integer is less than or equal to 30, the program will print the
factorial correct to eight digits. If the integer is greater than 30, the program will give
the upper and lower bounds for the factorial. The program will continue requesting more
integers until a negative integer is entered. '

To use Lhe subroutine, delete the driver coding in lines 1-99. The calling sequence is:
CALL FCTRL (N,OUT, LEFT, XLOG)

where:

1l

XLOG = LOG1g (N!)
N! =QUT * 10 ** LEFT

If N is less than or equal to 30, then LEFT = 0 and OUT is the approximation to N! in

standard floating-point form. If N is greater than 30, then OUT is the mantissa in floating-
point form 0. XXXXXXXXEO and LEFT is the exponent.

METHOD
Stirling's approximation for N! is
N
)

Jam (/e 12N/ (12n-1)) > N1 > J2N7 (/)N

The subroutine FCTRL approximates N! using the lower bound of Stirling's approximation.

RESTRICTIONS

N must be a nonnegative integer less than 13020810.
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SAMPLE SOLUTION

*RUN

THIS PROGRAM USES STIRLINGS APPROXIMATION TO CALCULATE THE
FACTORIAL OF N. ENTER N<1 TO STOP PROGRAMS
ENTER N

= ]

N1=1.0000000E+00

ENTER N

= 30

NI=2,6525286E+32

ENTER N

= 31

B8.222K645E+33 >N!> B.2007601E+33

ENTER N

= 50

3.0414086E+64 >N'> 3.0363396E+64

ENTER N

= 10

1. 1978S6TE+100 >Ni> 1.1964307E+100

ENTER N

= 90

1. 4857098E+13%8 >N1> 1.4843341E+138

ENTER N

= 100

9.3326029E+157 >Ni> 9.3248258E+157

ENTER N

= 1000

4.0236475E+2567 >Ni> 4.0233122E+2567

ENTER N

T.2666520E+19269 >Ni> 7.2665475E+19269
ENTER N

= 130202809

1.0000000E+1000000000 >Nt> 1.0000000E+1000000000
ENTER N

= 130202&10

N TOO LARGEs BNLY XLOG MEANINGFUL. (N= 130202810)
N1=0.

ENTER N

=zl

PROGRAM STOP AT 28
*
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SYMEIG

This FORTRAN program calculates the eigenvectors and eigenvalues of a real, symmetrical
matrix.

METHOD

The method used is Jacobi's Iteration Method, which was adapted for computer use by Von
Neuman. The method consists of applying to the matrix a system of plane rotations given
by orthogonal matrices designed to reduce the off-diagonal elements to zero. The eigen-

values are then the diagonal elements of the original matrix and, if the eigenvectors were
desired, they are developed as the columns of the product of the orthogonal matrices.

INSTRUCTIONS

Enter data as requested. For further instructions run the program.

SAMPLE SOLUTION

SYMEIG

* RUN

D@ YOU WANT INSTRUCTIONS?
= YES
INSTRUCTIONS F@R SYMEIG
THIS PROGRAM CALCULATES THE EIGENVECT@RS AND EIGENVALUES OF A
REALs SYMMETRI CAL MATRIX. THE METH@D USED 1S JACGBI °S LITERATION
METHBDs THE METHOD CONSISTS @F APPPLYING T@ THE MATRIX A SYSTEM
OF PLANE ROTATIONS GIVEN BY @ORTHO GONAL MATRICES MADE T@ REPUCE
THE OFF-DIAGONAL ELEMENTS T® ZERG. THIS PROGRAM USES F@UR
ARGUMENTS. A IS THE NAME @F A TW@~-DIMENSIGNAL ARRAY CONTAINING
THE REALs SYMMETRIC MATRIC IN ITS FIRST N RAWS AND COLUMNS
R IS THE NAME @F THE TWO-DIMENSIGNAL ARRAY WHICH WILL C@NTAIN
THE EIGENVECTORS IN ITS FIRST N COLUMNS.
N IS AN INTEGER VARIABLE @R CONSTANT GIVING THE @RDER
0F THE MATRIX.
MV IS AN INTEGER VARIABLE @R CONSTANT WHICH MUST BE 0 GBR 1.
IF IT IS 0 BOTH EIGENVECTORS AND EI GENVALUES ARE FGRMED.
IF IT IS @NE @NLY THE EIGENVALUES ARE F@AUND.
ENTER THE @RDER 0F MATRIX AND THE MATRIX SEPARATED BY C@MMAS.

3

l_:l:aS

115.25

55 .25, 2
HE MATRIX IS

1. 0000000E+00 1. 0000000E+ 00 5. 0000000E~01

1. 0000000E+00 1. 0000000E+00 2. 5000000E~01

5. 0000000E=01 2. 5000000E-01 2+ 0000000E+ 00
EACH EIGENVALUE FOLLGWED BY CORRESPBNDING EIGENVECTSR

~1.6647290E~02

~7.2120713E~01 6.8634924E-01 9. 37279 56E=02

1+ 4801212E+00

-~ 8 1

46 4428 103E-01 50 6210938E-01 =6.9760113E=01
2. 5365255E+00
5¢3148334E-01 40 6147330E-01 7. 1032929E~01

PRGGRAM STGP AT 85
*
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TMFCEV

This BASIC program evaluates time functions which are sums of exponentials and exponen-
tial sine-cosine terms.

INSTRUCTIONS
To use this program enter input data in the following format:

20 DATA NP,N1,N2,TO,DELTA-T,SIGMA

where:

NP=TOTAL NUMBER OF POINTS TO BE COMPUTED
N1=NUMBER OF EXPONENTTIAL TERMS
N2=NUMBER OF SINE-COSINE EXPONENTIAL TERMS

TO=TIME OF FIRST POINT
DELTA-T=TIME BETWEEN POINTS
SIGMA=STANDARD DEVIATION OF THE NOISE

NOTE:

If additive noise is not desired, SIGMA =0,

Parameters of the function are entered as follows:

41 pata c[1],cl2],c[3],...,s[1],s[2].s[3]....

60 pata af1],a[2],a05],...,8[1],8[2],8[3],.

79 pata w(t],w[2],w[3],...,6[1],c[2],6[3],-..

Only statement numbers between 41 and 79 inclusive may be used.

Maximum number of points permissible is 500 and 2N1+4N2 =20,

The computation of Et-X, where X is large may result in excessive running time,

Additional instructions may be found in the listing.
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SAMPLE PROBLEM

Evaluate a time function of this form:

CXEXP (~S*T)
¢ 8
-0.0178189 1.5662
0.0166119 16,2565
0.00450666 136,889
FORM: (A*COS (WHT)+B*SIN (WrT) ) ¥EXP (-G*T)
a B ¥ g
15,438 -.37221) 491.834  200.474

Type the following data:

20 DATA 30, 3, 1, 0, .00l, O
50 DATA  -1.78189E-2, 1.66119E-2, 4.50666E-3, 1.5662, 16.2565, 136.889
60 DATA  15.438, -.37221, 491,834, 200.474

NOTE:

In the data entered on line 20, 30 is the total number of points desired, 3 is the number
of exponential terms, 1 is the number of sine-cosine exponential terms, 0 is the time
of the first point, .001 is the time between the points and 0 is the standard deviation

of the noise.

The parameters of the functions, which are on lines 50 and 60, can be entered from
lines 41-79,

TMFCEV provides for adding random numbers from a uniform distribution (-1/2, 1/2)
with a standard deviation o (standard deviation of the noise). If additive noise is not
desired, input o as zero,
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SAMPLE SOLUTION

*20 DATA 305351505,:001,0

%50 DATA =1.781B9E=251.66119E=2, 4. 50666FE~3, 156625 16,2565, 136.889
60 DATA 15:,438,=.37221, 491834, 200. 474

% RUN

N@ISE SICGMA = 0

TERMS 6F F@RM CHEXP(~S%T) AREs

c S
~0.0178189 1. 5662
0-0166119 16.2565
00045067 136.889

TERMS OF FORM (ARCOSCWETI+BRSINCWKT) YR EXP (= Gk T) ARE:

A B W G
15. 438 -0.37221 491.834 2000474
FIRST POINT AT Ti,SPACING=T2
Ti= 0 Tes= 0.001
DATA POINTS ARE:
15 4413 1099474 5. 521522 0. 6030367 -2.827604
-~ 46 483233 =40 574454 ~3. 597412 =20 126857 -0 6597066
0.4720381 1.122184 1302155 1. 126335 O 75209 41
0.3298639 =0.028716 -0.263328 «0s3617165 -0 3465941
~0.2589358 ~0e 1426456 -0.0336229 0.0457423 0.0871895
00937954 0.0755308 0. 0447195 0.0124639 -0 013472
READY
*
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TNT1

This is a FORTRAN function intended to do a single variable table look-up and Lagrangian
interpolation of specified order.

INSTRUCTIONS
The calling sequence is:

Y = TNT1(X,NTAB,XTAB,YTAB,NPT,IERR)

where,
@ Y is the interpolated value.
® X is the value of the independent argument.
® NTAB is the number of elements in the table.
@ XTAB is the name of the independent variable table.

& °  YTAB is the name of the dependent variable table.

® NPT is the number of points over which the interpolation is performed.
e IERR is an error return as follows:
IERR
X< XTAB(1) -1

XTAB(1)< X < XTAB(NTAB)
X > XTAB(NTAB)

O

RESTRICTIONS

The elements of the independent variable table must be in monotonic ascending order.

The library subprogram TLUIl must be used with this subprogram, as shown in the Sample
Problem.

METHOD

The order of interpolation is N = MIN(NPT-1,NTAB-1). The best N+1 points are selected
for the interpolation.

Special cases are:

N =0 No interpolation
N =1 Linear interpolation
N =2 Parabolic interpolation

When the argument is outside the range of the independent variable table, TNT1 is set to 0.
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TNT1-2

Find the interpolated value in the YTAB table for a value of 5.1 in the XTAB table. Compute

the interpolated value by both linear and parabolic interpolation.

follows:

YTAB XTAB

0.0
10.
20.
30.
40.
50.
60.
70.
80.
90.

W OT =3 DD U Lo BN e O
OO T OO OOO

SAMPLE SOLUTION

10 DIMENSION XTABC10),YTAB(10)
20 XTAB(1)=0.05 YTAB(1)=0+0

30 DO 10 1=2,10

40 XTAB(1)=sXTABC(I=13+1.0

50 10 YTABCUI)=YTAB(I~1)+10.

60 X=5e1

10 NTAB=10

80 NPT=2

90  IERR=0

100 Y=TNT1 (XsNTABs XTABs YTABsNPTs» IERR?
110 IF (1ERRY 20,30,20

120 20 PRINT 21
130 21 FORMAT(/22H ARGUMENT NOT IN TABLE)

140 1ERR=0

150 Gg TO 40
160 30 PRINT 31,Y

The tables are defined as

170 31 FORMAT(/26H LINEAR INTERPOLATED VALUE, 1XsE20.7)

180 40 NPT=3

190 Y=TNT1(XsNTAB» XTAB, YTABs NPT» IERR)
200 IF _(1ERR)Y 50,60,50

210 50 PRINT 21

£20 Go T@ 70

230 60 PRINT 61.Y

240 61 FORMAT(/29H PARABOLIC INTERPOLATED VALUE, 1 XsE20.7)

250 70 ST@P

260 END
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READY

*RUN ®3TNT13TLUI

LINEAR INTERPGLATED VALUE
PARABOLIC INTERPGLATED VALUE

PR@GRAM STOP AT 250
*

0+5100000E+02

0+5100000E+02
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TNT2-1

This FORTRAN function is intended to do a double variable table look-up and linear inter-

polation..

INSTRUCTIONS

The calling sequence is:

Y = TNT2(X1,X2,NTABI,NTAB2,XTABL,XTAB2,YTAB,IERR1,IERR2, IDIM)

where,
®

@

Y is the interpolated value.

X1 is the value of the first independent argument.

X2 is the value of the second independent argument.

NTAB! is the number of elements in the first independent variable table.
NTABZ is the number of elements in the second independent variable table.
XTABI is the name of the first independent variable table.

XTAB2 is the name of the second independent variable table.

YTAB is the name of the dependent variable table.

IERRI is an error return as follows:

LERRI
X1sXTAB(1) -1
XTABI(I)SXlSXTABl(NTABl) 0
H1I>XTABI(NTARI1) 1

IERRZ is an error return as follows:

IERR2
X2=XTAB2(1) -1
XTAB2(1)$X2sXTAB2(NTABZ) 0
X2>XTABZ(NTAB2) 1

IDIM is the number of elements in the first dimension of the dependent variable.

RESTRICTIONS

The elements of each independent variable table must be in monotonic ascending order.
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The library subprogram TLU1l must be used with this subprogram, as shown in the Sample
Problem.

METHOD

The table is in the following format:

YTAB2(1) . . . XTAB2(NTAB2)
XTABI(1) YTAB(1,1) . . . YTAB(1,NTAB2)
XTABI(NTABI) YTAB(NTABIL, 1) . . . YTAB(NTABI1,NTAB2)

When either argument is outside the range of its independent variable table, TNT2 is set
to 0.

SAMPLE PROBLEM

Perform a table look-up and linear interpolation for X1=2.5 and X2=15.0. The tables
are described below.

XTAB2

-50. -10. 0.0 10. 20.  30. 50.

X 1.0 1.0 1.0 1.0 2.0 3.0 4.0 4.0 YTAB ROW 1
iT\ 2.0 1.0 1.0 2.0 3.5 5.0 6.0 6.0 YTAB ROW 2
? 3.0 1.0 1.8 2.0 2.2 2.4 2.6 3.0 YTAB ROW 3

4.0 0.0 4.0 5.0 6.0 7.0 6.0 10.0 YTAB ROW 4
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010 DIMENSI@N XTABI (4), XTAB2( 75 YTAB(50,7)
020 XTAB1(1)%1.03 YTAB(1,1)51.03 YTAB(1s2)=1.0
030 YTAB(1,3)=1.05 YTAB(2,1)=1.03 YTAB(2,2)=1.0
040 YTAB(3,13%1.0

050 XTAB1(2)22.03 YTAB(1,4)=2.05 YTAB(2,3)52.0
060 YTAB(3,3)%2.0 o

070 XTAB1(3)%3.03 YTAB(1,5)=3.05 YTAB(3,7)=3.0
080 XTAB1(4)%4.05 YTAB(4,2)%4.03 YTAB(1,6)54:0
090 YTAB(1, 732440

100 YTAB(3,2)u1.8

110 YTAB(4513=0.03 XTAB2(3)80.0

120 YTAB(4,3)%5.03 YTAB(2,5)%5.0

130 YTAB(3,4)%2.2

140 YTAB(454)7 6+03 YTAB(2,6)=640

150 YTAB (25 7060

160 YTAB(3,5)%2.4

170 YTAB(455)%7+0

180 YTAB(3, 63246

190 YTAB(4,6)8.0

200 YTAB(4, 7)=10-3 XTAB2(4)=10.,

210 XTAB2(1)®=50.

220 XTAB2(2)=-10+

230 XTAB2 (5)=20.

240 XTAB2 (632300

250 XTAB2(7)%50

260 YTAB(2,4)53.5

270 IERR1=0 IERR2#20

280 X122,5

290 X215,

300 Y=TNT2 (X1 X25 42 70 XTAB1, XTAB2, YTAB» 1ERR 1, IERR2s 50
310 IF CIERRI) 20,10520

320 10 IF C1ERR2) 20511520

330 11 PRINT 12,Y

340 12 FORMAT(/" TNT2  INTERPOLATED VALUE",E20.7)
350 6@ 1@ 30

360 20 PRINT 21sX1sX2

370 21 FORMAT(/9H ARGUMENT»F1003,3H @RsF10.3,13H N@T IN TABLE)
380 30 STOP

390 END

READY

HRUN %3 TNT23 TLUY

TNT2

INTERPGLATED VALUE 0.3275000E+01

PROGRAM STOP AT 380
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TNT2A

This FORTRAN function is intended to do a double variable table look-up and linear inter-
polation with a single arrayed table. For purposes of discussion, the first independent
variable table will be assumed to be vertical, and the second horizontal.

INSTRUCTIONS

The calling sequence is:

Y 5 TNT2A(X1,X2,NTAB1,NTAB2,XTAB1,XTAB2, YTAB,IERR1,IERR2)

where,
® Y is the interpola;ted value.
® X1 is the value of the first indepencent argument.
® X2 is the value of the second independent argument.
® NTABI is the number of elements in the first independent variable table.
® NTAB? is an array containing the number of elements in each row of the

second independent variable table.
® XTABI is the name of the first independent variable table.

® XTAB2 is the name of the second independent variable table. Elements are
stored sequentially by rows.

® YTAB is the name of the dependent variable table. Elements are stored
sequentially by rows.

® IERRI1 is an error return as follows:
IERR1
X1<XTAB(1) -
XTAB1(1)sX1<XTABI(NTABI)
X1s>XTABI(NTABI1) +
® IERR2 is an error return as follows:
IERR2
X2<XTAB2(1) -
XTAB2(1)sX2<XTAB2(NTAB2)
X2>XTAB(NTAB2) +

RESTRICTIONS

The elements of the first independent variable table must be in monotonic ascending order.

The elements of each row of the second independent variable table must be in monotonic
ascending order.
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The range of values in the second independent variable table must overlap in adjacent rows.

There must be at least two rows and two elements in each row.

The library subroutine programs TLUI and TNT1 must be used with this subroutine, (See
Sample Solution.)

METHOD

When either argument is outside the range of its independent variable table, TNT2A is set
to 0. The table format is best illustrated with the following example.

XTABI
1. 0. 10, 20. 30.
1. 2. 3. 4,
2. ~10. 0. 20. 30.
1. 2 5. 6.
3. -50. 0. 50.
1. 2 3.
4. -50. 50.
0. 10.

The tables are as follows:

NTAB1=4

NTAB2=4,4,3,2

XTAB1=1.,2.,3. 4.

XTAB2=0.,10.,20. , 30.,-10.,0.,20.,30., -50.,0.,50., -50. , 50.
YTAB=1.,2.,3.,4.,1.,2.,5.,6.,1.,2.,3.,0., 10,

SAMPLE PROBLEM

Perform a linear table look-up for X1=2. 5 and X2=15. 0. Use the table described in the
method section.
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SAMPLE SOLUTION

010 DIMENSION NTABR2(4), XKTAB1C4)» XTAB2(13)» YTABC13)

020 NTAB2(1)=43 NTAB2(2)=43 NTABi=4

030 NTAB2(3)=33 NTAB2(4)=2

040 ATABI(10=1.08 YTAB(1)=1.035 YTAB(Simie03 YTAB(9)=1.0
030 KTAB1 (2)m2.08 YTAB(2)mZ.03 YTAB(H)=2.03 YTAB(i03I=®2.0
060 XTAB] (33830038 YTAB(3)=3.03 YTAB(11)=23.0

070 XTAB1C(4)=4.03 YTAB(4)B44.0

080 XTABE(1)=0.05 XTABE(6)=D.03 XTAB2¢(103=0.0

090 YTABC12)=0.0

100 XTABR(2)=m10-02 YTAB(13)2810.0

110 XTAB2(3)220.08 XTAB2(7)=20.0

120 XTAB2(4)=230.05 XTAB2(B3=30.0

130 XTAB2(5)=-10.0

140 KTAB2(9)=2-50.08 XTAB2(12)=~5040

i50 XTAB2(11)=50.08 XTAB2(13)=50.0

160 YTAB(T7)=S5.0

170 YTAB(8)=6.0

180 IERR1=03 IERRE=Q

190 X122.53 X8=15.0

200 Y=TNT2ACX]» X2sNTABI 2 NTAB2, XTAB1» XTAB25s YTAB» IERR1 » IERR2)
210 IF (IERR1)Y 20,10.20

220 10 IF C(IERR2) 20s11,20

230 11 PRINT 12,Y

240 12 FORMAT (/" TNT2A INTERPOLATED VALUE",E20.7)

250 G@ Taé 30

260 20 PRINT 21, Xls X2

270 2} FORMAT(/9H ARGUMENTsF10:3s3H BRsF10e3513H N@T IN TABLE)
280 30 _STEOP

290 END

READY

*RUN ks TNT2A3TNTI 3 TLUI

THTZ2A

INTERPULATED VALUE 0.3275000E+01

PROGRAM ST@P AT 280

e
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ZCOP

This FORTRAN program approximates the roots of a polynomial of the form

where An is complex.

INSTRUCTIONS

Instructions for the format of the input data are generated by the program, as shown in the
Sample Problem. The program permits input errors to be corrected and generates the in-
structions required to make the corrections.

After the zeros of the polynomial have been approximated, the program reconstructs the
polynomial coefficients using these approximations. Both the zeros and the reconstructed
polynomial coefficients are printed by the program.

After the solution for the first polynomial has been computed, the program permits the
user to define a new polynomial or discontinue the execution process.

RESTRICTIONS

The degree of the polynomial must not exceed 25.

The imaginary part of a root is set to zero if its magnitude is less than or equal to . 0001
times the magnitude of the real part.

METHOD

The me{hod used to approximate the zeros of the polynomial is a modified Downhill-Newton
methodl.

This program uses the subroutines ZCOP2 (see sample solution).

SAMPLE PROBLEM

Find the roots of the following complex polynomial:

(1 DX° ¢ (-5-3DX% + (18-6DX + 0

* Lilley, F.E., Zeroes Of A Polynomial, General Electric Company, Technical Informa-
tion Series Publication, 65SD531.
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SAMPLE SOLUTION

*RUN ZCOBP372COP2

D@ YOU DESIRE USER INSTRUCTI@NS, TYPE YES @R N@

= YES

THIS PROGRAM FINDS THE ZERGS @F A POLYNOMIAL OF THE FO@RM:

ACII+ATICII+CACR2Y+AT 2 )% Z+ CAC3IFAT (B3I IR (Z%%2)+ o o CAIN® 1) +AT (N+ 1) 2k ( ZAKN)

WHERE ACI)> IS THE REAL PART OF THE COMPLEX CUEFFICIENT AND AICI) IS THE
IMAGINARY PART @F THE COMPLEX COEFFICIENT. THE DEGREE N CANNOT

EXCEED 25. INPUT F@RMAT IS FREE FIELD: ACI) AND AICI)s ARE REAL AND

N IS INTEGER. COEFFICIENTS ARE TYPED IN LOW ORDER FIRST.

TYPE ACI)»ATICIILA(2),AT(2)ETC.

N@W Y@U TRY IT

DEGREE

=3

COEFFICIENTS

= 050 18s=6 =55=3 1s1

ANY CURRECTIONS, TYPE YES OR NO

= NUJ

ROGT NG REAL PART COMPLEX PART
1 O O
2 0. 40000000E+01 0:19999999E+01
3 0. “0:.29999999E+01

RECONSTRUCTED COEFFICIENTS

SUBSCRIPT REAL PART COMPLEX PART
i ‘O 0.
2 0.17999999E+02 =0+ 60000001E+01
3 ~0+50000000E+01 ~0.30000000E+01
4 0. 1000C000E+01 0 10000000E+01

D8 YOU WISH TO SOLVE ANOTHER POLYNOMIAL, TYPE YES @R N@
= NG

PROGRAM STOP AT O
#*
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ZCOP2

This FORTRAN subprogram program finds the roots of a polynomial from its complex
coefficients,
INSTRUCTIONS
The calling sequence for this subprogram is:
CALL CDOWNH(A, Al N, RR, CR)
where,
® A is the real part of the coefficient array.
® Al is the imaginary part of the coefficient array.
® N is the degree of the polynomial.
® RR is the array of the real parts of the roots.
@ CR is the array of the imaginary parts of the roots.

The polynomial coefficients must be stored in ascending powers of the variable, i.e
constant term first,

*

RESTRICTIONS

The degree, N, must not exceed 25,

The imaginary part of a root is set to zero if its magnitude is less than or equal to . 0001
times the magnitude of the real part,

METHOD

Modified Downhill -Newton scheme,

The ceofficients are reconstructed from the computed roots and stored in A, thus destroy-
ing the original polynomial coefficientsl,

SAMPLE PROBLEM

Find the roots of the following complex polynomial:

(1+1) X4 (-5 -3 X2 4 (18 - 61) X + 0

1Lilley, F.E., Zeroes of a Polynomial, General Electric Company, Technical Information
Series Publication, 65SD531.

MA-125 #DA43



ZC0P2-2

SAMPLE SOLUTION

*L1S

T

010
020
030
040
050
060
070
080
090
100
110
120

READ

DIMENSION AC4)sAIC(43sRRI3ISCR(I)

DATA A/0es518e5=5651e/5A1/00s=6b0s=3cs1e/
CALL CDOWNHCA»AI»3sRRsCRY

DB 5 1I=21,3

5 PRINT 10, IsRRCIDHCRCID)

10 FQRMAT(SHORGQTJIQJIOXF1R2E2007)

D@ 15 I=l.4

IMi=1=1

15 PRINT 20, IMI1,ACIYSALICT)

20 FORMAT(33HORECONSTRUCTED COEFFICIENT OF X%, 12,1P2E18.7)
ST@pP

END

y

f&Eﬁ*;ZCOPQ

ROGT

ROQT

ROGT

RECY

RECO

RECE

RECO

1 O O

2 4.0000000E+00 1.9999999E+00

3 o =2:9999999E+00
NSTRUCTED COEFFICIENT OF X% 0O O O
NSTRUCTED COEFFICIENT OF Xkx | 1+7999999E+01 -6+0000001E+00
NSTRUCTED C@OEFFICIENT @QF Xk* 2 =5.0000000E+00 ~3.0000000E+00

NSTRUCTED COEFFICIENT OF Xk 3 1.0000000E+00 1.00000COE+DO

FPROGRAM STOP AT 110

S
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ZEROES

This BASIC program locates values of X for any arbitrary function of X, Specifically, the
program locates the values of X at which relative maximums and minimums of F (X) occur,
and the values of X for which F (X) is zero, i.e., the zeros or roots of the function.

INSTRUCTIONS

Enter the data in the following format:
100 DATA XMIN,XMAX,ACC,INCR
200 LET Y = A function of X
RUN

where,

® XMIN, XMAX define the interval in which values of X are to be sought.

® ACC is the accuracy (in number of significant figures) to which the ZEROES of X
and the maximum and minimum values of F (X) are to be estimated.

® INCR is the number of increments into which the total interval is to be divided for
search purposes (try 50 to start).

® The function of X is any legitimate BASIC language expression involving the variable X.

SAMPLE PROBLEM
To illustrate how this program is used consider the sine function; it crosses the axis at 0

degrees and every 180 degrees thereafter, has maximums at 90 degrees and every 180
degrees thereafter, and has minimums at 270 degrees and every 180 degrees thereafter.

Since BASIC assumes all trigonometric functions are in radians, convert degrees to radians
by multiplying X by 7 /180,

SAMPLE SOLUTION

* 100 DATA 0, 7255 3,200
#200 LET Y=2SINCX%3. 14159265/ 180)

* RUN
PRINT=TYPE FoxXy X
ZERQ 0 4]
MAX 1 90.00195
ZER® 4] 1800039
MIN -1 270. 0059
ZER® 4] 360.0078
MAX i 4500 0098
ZER® 0 5S40, 0117
MIN -1 630.0137
ZER® 0 7199873

READY

%
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ZORP

This FORTRAN program approximates the roots of a polynomial of the form
P(z) = 2, Anzn
where An is real.

INSTRUCTIONS
Instructions for the format of the input data are generated by the program, as shown in the

Sample Problem. The program permits input errors to be corrected and generates the in-
structions required to make the corrections.

After the zeros of the polynomial have been approximated, the program reconstructs the
polynomial coefficients using these approximations. Both the zeros and the reconstructed
polynomial coefficients are printed by the program.

After the solution for the first polynomial has been computed, the program permits the user
to define a new polynomial or discontinue the execution process.

RESTRICTIONS

The degree of the polynomial must not exceed 100,

The imaginary part of a root is set to zero if its magnitude is less than or equal to . 0001
times the magnitude of the real part.

METHOD

The method used to approximate the zeros of the polynomial is a modified Downhill-Newton
method*,

SAMPLE PROBLEM

Find the roots of the following polynomials:

x4 4 18x3 1 89%% 4 72X - 180 = 0

10 ax? _oax® L 1ex” 4 15%® - 28x® - 21x? . eax®  44x? - 48X - 36 = 0

* Lilley, F. E.,, Zeroes Of A Polynomial, General Electric Company, Technical Information
Series Publication, 658SD531.
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SAMPLE SOLUTION

RUN
D@ YGU DESIRE USER INSTRUCTIONS., TYPE YES @R NGO

= YES

THIS PROGRAM FINDS THE ZERGS OF A POLYNOMIAL GF THE FGRM:

ACIITAC2IRCZISACIIR(ZHEL )+ oo o PATNS L DR ZHRND

WHERE THE DEGREE N CANNGT EXCEED 100.
CEEFFICIENTS ARE TYPED IN L8W GRDER FIRST.
INPUT FORMAT IS FREE FIELD$ THE ACI> ARE REAL AND N IS INTEGER.

NOW YBU TRY IT

DEGREE

» 4

CBEFFICIENTS

%2 =i180es TR2osBPos1Besls

ANY CORRECTIONS, TYPE YES B8R N@

= NG
RGET NG . REAL PART COMPLEX PART
1 =0+30000002E+01 0o
2 0. 10000000E+01 0.
a =0+59999999E+01 0.
4 “0:99999999E+01 O

SUBSCRIPT RECONSTRUCTED C@EFFICIENTS
=0 18000001E+0G3

1
2 0. T1999989E+02
3 0-88999999E+02
4 0«1 B000000OE+O2
S 0+ 10000000E+01
D8 YOU WISH T@ SOLVE ANGTHER POLYNGMIAL, TYPE YES @GR NG
= YES
DEGREE
= 10
COEFFICIENTS

= "3608‘481)44s;6409”‘f..109“28001503l600'3u1°40nlo
ANY CORRECTIONS, TYPE YES OR NO

= N
RODT NG REAL PART COMPLEX PART
i =0.10021222E+01 0s
2 ~0-99893889E+00 =0+ 184919 70E~02
3 =0.99893889E+00 0.18491970E-02
4 0. 10000000E+01 Oe
5 0:9999999 TE+00 =0.99999999E+00
6 0:999299997E+00 0:99999999E+00
7 «0010000000E+01 0.10000001E401
8 =0e 10000000E+01 -0« 10000001E+01
9 0-30000001E+01 0:34526698E=03
10 0.30000001E+01 =0.34526698E~03
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SUBSCRIPT RECOGNSTRUCTED CBEFFICIENTS
=0.36000009E+08
=0« 48000004E+02
0.44000008E+02
0:6399999%E+08
~0-21000008E+08
=0e2799999TE+02
0.1 5000003E+02
0 13999999E+08
~0.29999999E+01
=0.40000001E+01
0. 10000000E+01

== O DW= D DR

o oo

D& YBU WISH T@ S8LVE ANOTHER POLYNOMIAL:. TYPE YES OR NG
= N@

PRGGRAM STOP AT 0
&
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ZORP2

This FORTRAN subprogram finds the roots of a polynomial from its real coefficients.

INSTRUCTIONS
The calling sequence for this subprogram is:

CALL DOWNH(A, N, RR, CR)

where,
® A is the array of the real polynomial coefficients.
® N is the degree of the polynomial.
® RR is the array of the real parts of the roots.
® CR is the array of the imaginary parts of the roots,

The polynomial coefficients must be stored in ascending powers of the variable, i.e.
constant term first,

’

RESTRICTIONS

The degree, N, must not exceed 25.

The imaginary part of a root is set to zero if its magnitude is less than or equal to . 0001
times the magnitude of the real part.

METHOD

Modified Downhill-Newton scheme.

The coefficients are reconstructed from the computed roots and stored in A, thus destroying
the original polynomial coefficientsl.

SAMPLE PROBLEM

Find the roots of the following polynomial:

"
oxtox®ix®ixti = o0

Series Publication, 65SD531.
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SAMPLE SOLUTION

*LIST

010 DIMENSION ACG6IsRR{SY»CR(S)
020 DATA A/leslesloslostoslel/
030 CALL DOWNH(A, 5:RRsCR)

040 DO 5 I=1s5

050 5 PRINT 10s,I,RRCIJsCRCID
060 10 FIRMAT(SH ROOT,12510X, 1P2E20.7)

070 PRINT 20

ZORP2-2

080 20 FORMAT("OTHE RECONSTRUCTED COEFFICIENTS @F THE PELYNOMIAL ARE:')

090 DO 25 I=1,6
100 25 PRINT 30, ACD)

110 30 FORMAT(20Xs 1PE20.7)

120 STOP
130 END

READY

*RUN #*3ZQRP2
ROOT
ROOT
ROOT
ROGT
ROOT

wvh WO

=99999998E-01
= 4e9999998E~01
=4e999999BE-01
409999997E~01
4.9999997E-01

O

8. 6602537E-01
~8. 6602537E~01
8. 6602540E~01
~Be 6602540E-01

THE RECONSTRUCTED COEFFICIENTS OF THE POLYNOMIAL ARE:

PROGRAM STOP AT 120
*

909999985E-01
9e9999994E-01
1.00C0000E+00
P9999999E-01
1+0000000E+00
1.0000000E+00
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