Honeywell Bull

TIME-SHARING
APPLICATIONS LIBRARY
GUIDE
VOLUME I - MATHEMATICS
ADDENDUM A

SERIES 600/6000

A	P	PI	_IC	A	T	0	N	S
, ,				/			n ve	_

SUBJECT:

Additions to the Mathematical Time-Sharing Programs.

SPECIAL INSTRUCTIONS:

This update, Order Number DA43A, is the first addendum to DA43, Revision 0, dated June 1971. The attached pages are to be inserted into the manual as indicated in the collating instructions on the back of this cover.

Ten additional programs are being added with this addendum; these programs are listed in the Preface.

NOTE: This cover should be inserted following the manual cover to indicate the updating of the document with Addendum A.

DATE:

December 1972

ORDER NUMBER:

DA43A, Rev. 0

6334 1.5173 Printed in France

Ref.: 19.53.106 A1

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

Catalog

Insert

12/72 Preface
Catalog
*BASE (after ARCTAN)
*CPOLY (after COMP3)
*CPOLY-DR
*EIGNHC (after EIGi)
*EIGNSR
*LINSD (after LINEQ)
*LINSS (after LINSR)
*MTRAN (after MTMPY)
*SPLINE (after SPEIGI)

*SPLINT

Programs preceded by an asterisk (*) represent new programs that are being added at this time; be certain to write these into the Table of Contents for future reference.

©1973, Honeywell Information Systems Inc.

File No.: 16M3, 17M3, 1ZM3

PREFACE

This manual describes and discusses the usage of the mathematical time-sharing programs available with Series 600 and 6000 information processing systems. The programs are listed alphabetically in the table of Contents.

Each program description includes the purpose of the program; language in which it is written; method of approach, if applicable; instructions for use; restrictions if any; and sample problems and solutions. In the sample solutions, all information typed by the user is underlined.

The instructions provided assume that the programs are available in the user master catalog LIBRARY and accessible with READ or EXECUTE permission. In the sample solution printouts, the programs had already been accessed using the GET command, and/or copied onto the current file using the OLD or LIB command.

Time-sharing programs for other classifications are also available from Honeywell under the following titles:

Series 600/6000 Time-Sharing Applications Library Guide, Volume II - Statistics, Order No. DA44

Series 600/6000 Time-Sharing Applications Library Guide, Volume III - Industry, Order No. DA45

Series 600/6000 Time-Sharing Applications Library Guide, Volume IV - Business and Finance, Order No. DA46

A complete listing of the programs in the library is available by listing the Library program, CATALOG. A copy of this listing follows the table of Contents for your information.

ADDITIONAL PROGRAMS INCORPORATED IN THE DECEMBER 1972 ADDENDUM

BASE
CPOLY
CPOLY-DR
EIGNHC
EIGNSR
LINSD
LINSS
MTRAN
SPLINE

SPLINT

All programs listed above (with the exception of SPLINE and SPLINT) have been coded and tested using Fortran Y. When using these particular programs, enter <u>YFOR</u> after the terminal inquires 'SYSTEM?".

Series 600/6000 Time Sharing Applications Library programs are available to users of the DATANETWORK service. Please contact your local Honeywell representative for further details.

This document describes programs that originated from a variety of sources, such as users and the Honeywell field organization. The programs and documentation are made available in the general form and degree of completeness in which they were received. Honeywell Information Systems Inc., therefore, neither guarantees the accuracy of the programs nor assumes support responsibility.

CATALOG OF SERIES 6000/600 T-S LIBRARY PROGRAMS

FILE TYPE INDICATOR:

LANGUAGE MODE (FIRST LETTER) (FOLLOWING LETTERS) A ALGOL P (OR BLANK) PROGRAM B BASIC S SUBROUTINE(S) C CARDIN F FUNCTION(S) DATABASIC P-S PROGRAM WITH EXTRACTABLE SUBROUTINE(S) 6 TEXT EDITOR R RELOCATABLE OBJECT (C*) FØRTRAN H SYSTEM LOADABLE OBJECT (4*)

ALL FILES ARE SOURCE MODE INLESS OTHERWISE INDICATED.

SUBJECTS DOCUMENTATION MANUAL ----MATHEMATICS (MA) INTEGRATION DIFFERENTIATION, DIFFERENTIAL EQ. INTERPOLATION POLYNOMIALS LINEAR EQUATIONS MATRICES NON-LINEAR EQUATIONS SPECIAL FUNCTION EVALUATION LØGIC AND NUMBER THEORY STATISTICS (ST) 3RDER # DA44 CURVE FITTING AND REGRESSION ANALYSIS OF VARIANCE PROBABILITY DISTRIBUTIONS CONFIDENCE LIMITS HYPOTHESIS TESTING DESCRIPTIVE STATISTICS RANDOM NUMBER GENERATION MISCELLANEOUS STATISTICS BUSINESS AND FINANCE (BF) MANAGEMENT SCIENCE AND OPTIMIZATION (MS) ORDER # DA45 LINEAR PROGRAMMING INTEGER PROGRAMING NON-LINEAR OPTIMIZATION NETWORK ANALYSIS FORECASTING SIMULATION ENGINEERING (EN) GEOMETRIC AND PLOTTING (GP)

THE DOCUMENTATION FOR THESE PROGRAMS IS AVAILABLE IN FOUR MANUALS: SEE ORDER # DA43 FOR PROGRAMS IN MATHEMATICS
ORDER # DA44 FOR PROGRAMS IN STATISTICS
ORDER # DA46 FOR PROGRAMS IN BUSINESS AND FINANCE
ORDER # DA45 FOR PROGRAMS IN ALL OTHER CATEGORIES.

SUBROUTINES THAT ARE CALLED BY A PROGRAM AND MUST BE EXECUTED WITH IT ARE LISTED IN BRACKETS AT THE END OF THE DESCRIPTION.

THESE PROGRAMS HAVE ALL BEEN REVIEWED AND TESTED BUT NO RESPONSIBILITY CAN BE ASSUMED.

12/72

EDUCATION AND TUTORIAL (ED)

UTILITY AND MISCELLANEOUS (UM)

DEMONSTRATION (DE)

EIGENVALUES AND VECTORS OF REAL SYM. MATRIX (FIG.) SOLVE LIN. SYS. W/ SYMMETRIC DOUBLE, PREC. COFF. MATRIX, ... SOLVE LIN. SYS. W/ SYMMETRIC SINGLE PREC. COFF. MATRIX FS LINSO FS LINSS MATRIX INVERSION BY PIVOTS FS MTINV MATRIX MULTIPLICATION FS MTMPY TRANSPOSE A MATRIX FS MTRAN SPECIAL EIGEN PROBLEMS [EIGI] FS SPEI 61 EIGENVALUES OF SYM MATRIX BY JACOBI METHOD FD SYMELG

DA43A

```
***NON-LINEAR EQUATIONS***
BROWN
          FS
                SOLN OF SIMULTANEOUS SYSTEMS BY BROWN METHOD
SECANT
          FS
                SOLN OF SIMULTANEOUS SYSTEMS BY SECANT METHAD [MT[NV]
SØLN
          FF
                ZERE OF AN ARBITRARY FUNCTION
ZERØES
          R
                ZERO, MAX, MIN OF FUNCTION
*** SPECIAL FUNCTION EVALUATION ***
ARCTAN
         E, E,
                ARCTANGENT IN RADIANS OF Y/X
BESL
          FS
                BESSEL FUNCTION ( SAMF)
COMPI
                EVALUATES REAL HYPERBOLIC TRIS FUNCTIONS
          FF
COMP2
          FS
                COMPLEX MULT. AND DIVISION
CØMP3
          FS
                EVALUATES VARIOUS FUNCTIONS FOR COMPLEX AROUMENT [COMP2]
ERRF
          FF
                ERROR FUNCTION
ERRINV
          FF
                INVERSE ERROR FUNCTION
          FS
FRESNL
                EVALUATES FRESNAL INTEGRALS
SAMF
          FF
                GAMMA FUNCTION
                EVALUATES JACOBIAN ELLIPTIC FUNCTIONS SN. CN. DN
JACELF
          FS
ORTHP
          FF
                EVALUATE POTHO CONAL POLYNOMIALS
STIRLING
         FP-S
                N FACTORIAL BY STIRLINGS APPROXIMATION
                EVALUATE DAMPED OR UNDAMPED FOURIER SERIES
TMFCEV
          P
***LOGIC AND NUMBER THEORY***
45QRS
                WRITES INTEGERS AS SUM OF SQUARES OF FOUR INTEGERS
          R
BASE
          FP
                CONVERTS NUMBERS FROM ONE BASE TO ANOTHER
CONCLUDE
          B
                DETERMINES LOGICAL CONCLUSIONS FROM PROPOSITIONAL LOGIC
SCDN
          FS
                G. C. D. OF N INTEGERS
华书本本本市本本本本本本本本本本本本本本 ST→ → STATI STICS 女相准在本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本
***CURVE FITTING AND REGRESSION***
CFIT
          FP
                LEAST SORS. POLY. WITH RESTRAINTS
CURFIT
          P
                FITS SIX DIFFERENT CURVES BY LEAST SORS
                LEAST SQUARES ESTIMATE OF FINITE FOURIER SERIES MODEL
FURIR
          FP
FOURIER
          8
                COEFF OF FOURIER SERIES TO APPROX A FUNCTION
LINEFIT
          FS
                LEAST SORS LINE
LINREG
                LST. SQRS. BY LINEAR, EXPONENTIAL, OR POWER FUNCTION
          R
LSPCFP
          FP
                LEAST SORS POLYNOMIAL FIT
LSAMM
          FS
                GENERALIZED POLY FIT BY LEAST SORS OR MIN-MAX
MREGI
          EP
                MULTIPLE LINEAR REGRESSION
MULFIT
          8
                MULTIPLE LINEAR FIT WITH TRANSFORMATIONS
DRPOL
          FP
                LEAST SORS FIT WITH ORTHOGONAL POLYS
                LEAST SORS POLYNOMIAL FIT
POLFIT
          M
POLFT
          FP
                LEAST SORS POLYNOMIAL FIT
SML RP
          FP
                MULTIPLE LINEAR REGRESSION
SML RPØBJ
          FHP
                SYSTEM LOADABLE FILE FOR SMLRP
                EFFROYMSON'S MULTIPLE LINEAR REGRESSION AL SORTITHM
STAT20
          8
STAT21
          13
                COMPUTES MULTIPLE LINEAR REGRESSIONS
***ANALYSIS OF VARIANCE***
AV BVA
          FP
                ONE OR TWO WAY ANALYSIS OF VARIANCE
ANVAT
          FP
                ONEWAY ANALYSIS OF VARIANCE
EAV VA
          FP
                THREE WAY ANALYSIS OF VARIANCE
ANVA5
          FP
                MULTIPLE VARIANCE ANALYSIS
KRUWAL.
          FP
                KRUSKAL-WALLIS 2-WAY VARIANCE CXYNBAMI
ONEWAY
          B
                ONEWAY ANALYSIS OF VARIANCE
STAT13
          В
                ANALYSIS OF VARIANCE TABLE, 1-WAY RANDOW DESIGN
STATI 4
                ANALYSIS OF VARIANCE TABLE FOR RANDOMIZED BLOCK DESIGN
          8
                ANALYSIS OF VARIANCE TABLE FOR SIMPLE LATIN-SO DESIGN
STAT15
                ANALYSIS OF VARIANCE TABLE, GRAECO-LATIN SQUARE DESIGN
STAT16
          R
STAT17
          В
                ANOVA TABLE OF BALANCED INCOMPLETE BLACK DESIGN
                ANALYSIS OF VARIANCE TABLE, YOUDEN SQUARE DESIGN
STAT18
          В
```

ANALYSIS OF VARIANCE TABLE, 1-WAY RANDOM DESIGN

12/72

STAT33

R

```
***PROBABILITY DISTRIBUTIONS***
ANPE
         FF
               NORMAL PROBABILITY FUNCTION (FRRF1
BETA
                BETA DISTRIBUTION
         8.
BINDIS
                BINOMIAL PROBABILITIES
EXPLIM
         B
               EXPONENTIAL DISTRIBUTIONS
POISON
          FF
                POISSON DISTRIBUTION FUNCTION
PRARC
                PROBABLITIES OF COMBINATIONS OF RANDOM VARIABLES
          FP
PRØ VAR
         B
               NORMAL AND T-DISTRIBUTION
TDIST
          FF
                T-DISTRIBUTION (BETA)
         FF
XTNGAM
               INCOMPLETE GAMA FUNCTION
***CONFIDENCE LIMITS***
BAYES
                DIFFERENCE OF MEANS IN NON-EQUAL VARIANCE
BICONF
                CONF. LIMITS FOR POPULATION PROPORTION (BINOMIAL)
BINOM
          FP
                BINOMIAL PROBABILITIES AND CONFIDENCE BANDS
COLINR
         B
                CONFIDENCE LIMITS ON LINEAR REGRESSIONS
CONBIN
                CONF. LIMITS FOR POPULATION PROPORTION (NORMAL)
CONDIF
          В
                DIFFERENCE OF MEANS IN EQUAL VARIANCE
CONLIM
                CONF. LIMITS FOR A SAMPLE MEAN
          P
STATO5
                CONFIDENCE INTERVAL FOR MEAN BY SION TEST
STATO6
         P
                CONFIDENCE LIMITS, WILCOXON SI GNED RANK SUM TEST
***HYPOTHESIS TESTING***
BITEST
        R
                TEST OF BINOMIAL PROPORTIONS
CHISOR
          55
                CHI-SQUARE CALCULATIONS
                CONTINGENCY COEFFICIENT [XINGAM]
CARRE
         FD
CØRRL2
          FP
                CORRELATION COEFFICIENT (TDIST: BETA)
KOKO
          FP
                KOLMOGOROV-SMIRNOV TWO SAMPLE TEST (XINGAM)
SEVPRA
         12
                CHI-SQUARE
STAT01
               MEAN, STD OF MEAN, ..., T-RATIO, 2 GROUPS, PAIRED
         B
                MEANS, VARIANCES, AND T-RATIO 2 GROUPS, INPAIRED DATA
STAT02
STATOA
               CHI-SQUARE AND PROBABILITIES, 2X2 TABLES
         P
STATOR
          COMPARES TWO GROUPS OF DATA USING THE MEDIAN TEST
STATO9
          B
                COMPARE 2 DATA GROUPS, MANN- WHITNEY 2-SAMPLE RANK TEST
STATII
         В
                SPEARMAN RANK CORRELATION COEF. FOR 2 SERIES OF DATA
STAT12
               COMPUTES CORRELATION MATRIX FOR N SERIES OF DATA
         FP
               KENDALL-RANK CORRELATION
TAU
***DESCRIPTIVE STATISTICS***
MANDSD B
               FIND MEAN, VARIANCE, STD
STAT
         FP
                FIND SEVERAL STATISTICS FOR SAMPLE DATA (ANPF: FRRF)
                FIND VARIOUS STATISTICAL MEASURES
STATAN
         8
TESTUD
         P
                SAMPLE STATISTICS
UNISTA
               DESCRIPTION OF UNI-VARIANT DATA
***RANDOM NUMBER SENERATION***
FLATSØRC C
               CARDIN SOURCE FILE FOR FLAT
FLAT
         FRF
                UNIFORM RANDOM NUMBER SENERATOR
RANDX
         FF
                RANDOM #'S, UNIFORM DIST. BETWEEN O AND 1
         EE
                CALCULATES NORMAL RANDOM NUM. (FLAT)
RNDNRM
         FRF
                UNIFORM RANDOM NUMBER GENERATOR
WIFM
                CARDIN SOURCE FILE FOR UNIFM
UNIFMSØR C
URAN
         FRF
                UNIFORM RANDOM NUMBER GENERATOR
         C
URANSORC
                CARDIN SOURCE FILE FOR URAN
               NORMAL RANDOM NUMBERS, VARIABLE MEAN, STD (RANDX)
XNOR1
          FF
         FF
                NORMAL RANDOM NUMBERS, MEAN O, STD 1. [RANDX]
XNØ RM
***MISCELLANEOUS STATISTICS***
FACTAN
          ED
```

EXPLANATION OF COLINE, CURFIT, MULFIT, UNISTA

FACTOR ANALYSIS

STADES

```
ANNUIT
                ANNUITIES, LØANS, MØRT&A GES
BL. D&CAST
                ANALYZE BUILDING COSTS
BONDATA
          A
                ANALYSIS OF A BOND INVESTMENT PORTFOLIO
PANDPR
                COMPUTES PRICE AND ACCRUED INTEREST OF A BOND
          P
BONDSW
                CALCULATES THE EFFECT OF A BOND SWITCH
          3
BONDYD
                COMPUTES BOND YIELDS
CASHFLOW
          (A)
               PREDICTS NEXT YEARS CASH FLOW
DEPREC
          R
                CALCULATES DEPRECIATION BY FOUR METHODS
INSTLO
          8
                CALCULATES MONTHLY PAYMENT SCHEDULE ON INSTALLMENT LOAN
IN VANL
          FP
               RETURN ON INVESTMENT ANALYSIS
LESSEE
          8
               COMPARES A LEASE WITH PURCHASE OF EQUIPMENT
                SIMULATES LESSOR'S CASH FLOW AND RATE OF RETURN
LESSIM
          8
LESSØR
          B
               CALCULATES THE LESSORS CASH FLOW & RATE OF RETURN
MAKE-BUY
          B
               TO MAKE OR TO BUY DECISIONS
MESIM
          FHP
                SIMULATES COMPETITIVE INTERACTION OF COMPANIES
MESIM-CS
          FRP
               OBJECT DECKS FOR MESIM
               ON LINE INSTRUCTIONS FOR MESIM
MGSIM-IN
MORTCST
          門
               MORTGAGE SCHEDULE FOR VARIOUS TERMS
MORTGAGE
         FP
               CALCULATES A MORTGAGE REPAYMENT SCHEDULE
RETURN
               COMPUTES ANNUAL RETURNS FOR A SECURITY FROM ANNUAL DATA
          8
SAL DATA
               COMPUTES PROFITABILITY OF DEPARTMENTS OF A FIRM
          R
SAVING
          1
               SAVINGS PLAN CALCULATIONS
SMLBUS
               PAYMENT SCHEDULES FOR A SMALL BUSINESS ADMST. LOAN
TRIIINT
               INTEREST RATE CALCULATIONS
          獭
***LINEAR PROGRAMMING***
ASSIGNIT B
               THE ASSIGNMENT PROPILEM
LINPRO
          A
               LINEAR PROGRAMMING
LNPROS
         FP
               LINEAR PROGRAMMING
TRANSPO
         8
               THE TRANSPORTATION PROBLEM
UNDEG
         FS
               FINDS A SOLUTION FOR AN UNDERDETERMINED LINEAR SYSTEM
***INTEGER PROGRAMMING***
INTOI
         FP
               ZIONTS' MODIFICATION OF BALAS' ZERO-ONE ALGORITHM
                GOMORY'S PURE AND MIXED INTEGER PROGRAMMING
INTLP
          FP
***NON-LINEAR OPTIMIZATION***
CSM
               OPTIMIZE A LINEARLY CONSTRAINED CONVEX FUNCTION (UNDER)
         B. C.
DAVIDON
          P
               DAVIDON'S UNCONSTRAINED OPTIMIZATION
GEØ SIM
         В
               HEURISTIC SCHEDULING OF N JOBS IN A M MACHINE SHOP
GPRAG
               SOLVES GEOMETRIC PROGRAMMING PROBLEMS
         FHP
GPRØG-SØ
         C
               CARDIN SOURCE FILE FOR GPROG [UNDEG: CSM]
               SCHEDULES N JOBS IN A SHOP WITH M MACHINES
JSSIM
         8
LØGIC3
         FP
               UNCONSTRAINED OPTIMIZATION
MAXOPT
         FP
               UNCONSTRAINED OPTIMIZATION
***NETWORK ANALYSIS***
CPM
         FP
               CRITICAL PATH METHOD
KILTER
         FP
                OUT OF KILTER' ALGORITHM (MINIMUM COST CIRCULATION)
MAXFLOW
         FP
               MAXIMUM FLOW THRU NETWORK
PERT
               SIMPLE ANALYSIS OF A PERT NETWORK
SHØRTEST FP
               SHORTEST PATH - MIN SPANNING TREE
***FORECASTING***
CØEFS
         B
               DETERMINE SEASONAL COEFFICIENTS ON TWO CYCLES
COMBI
               DETERMINES ECONOMIC ORDER QUANITY FOR INVENTORY ITEMS
         R
OPTIM
         5
               OPTIMUM SERVICE LEVEL FOR ONE INVENTORY ITEM
TCAST
               TIME SERIES FORECASTING [TCAST1; TCAST2]
         FP
TCASTI
         FH
               OVERLAY MODULE OF TOAST
               TIME SERIES FORECASTING
TCAST
         FHP
TCAST2
         FH
               OVERLAY MODULE OF TCAST
TCAST1
         P.H
               OVERLAY MODULE OF TOAST
SMOOTH
               TRIPLE SMOOTHING OF A TIME SERIES
         FS
```

```
CASPDATA E
               DATA FILE FOR SAMPLE PROGRAM GASPSAMP
               "GASP" SIMULATION SYSTEM
         FS
GASPITA
GASPSAMP
         FP
               SAMPLE PROGRAM FOR GASPIIA (GASPIIA) GASPDATA)
ACNET
         FP
               FREQUENCY RESPONSE OF A LINEAR CIRCUIT
               STEEL BEAM SELECTION
REMDES
               GAS CONTROL VALVE COEFF.
GCUSI7
         R
LCVSIC
         M
               LIQUID CONTROL VALVE COEFF.
               SYNTHESIZES ACTIVE LOW-PASS FILTERS (LFLDAT)
LFILTR
         PA :
               DATA FOR LFILTR
I FI DAT
LFL TIN
               INSTRUCTIONS FOR LFILTR
               DESIGN LOW PASS FILTERS
LPFILT
         興
         FP
               GENERAL STEADY-STATE CIRCUIT ANALYSIS
MLNET
               OTTO CYCLE OF ENGINE
ØTTØ
         A
               CALCULATES & COST AND TONS OF MATERIAL TO PAVE A ROAD
PAVEIT
         B
               FINDS MOLAR VOLUME OF A GAS GIVEN TEMPERATURE AND PRES.
PVT
         FP
               STEAM CONTROL VALVE COEFF.
SCVSIZ
         B
               STEEL SECTION CAPACITIES
SECAP
非本本本本本本本本本本本本本本本本本本本本在P-GEOMETRIC AND PLGTTIN @企业本本和市本市本本本本本本本本本本本本本本本本本本本本
               DIVIDES A CIRCLE INTO N EQUAL PARTS
CIRCLE
               PLOTS UP TO 9 CURVES SIMULTANEOUSLY
PAT
          FS
                SIMULTANEOUSLY PLOTS 1 TO 6 FUNCTIONS
PLØ TTØ
          B
               PLOTS EQNS IN POLAR COORDINATES
          FP
PØL PLØ
                SOLVES ANY SPHERICAL TRIANGLE
SPHERE
          B
                SOLVES FOR ALL PARTS OF ANY TRIANGLE
TRIANG
          B
TWOPLO
          8
                SIMULTANEOUSLY PLOTS 2 FUNCTIONS
               PLOTS SINGLE-VALVED FUNCTIONS
XYPLOT
          B
在水水水水水水水水水水水水水水水水水水平区D--EDUCATION AND TUTORIAL。水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水
                DRIVER FOR EXPER, A COMPUTER ASSISTED INST. LANG.
DRIVES
          FHP
                EXPER TUTORIALS IN EXPER (N=1 TO 5) [PREPRS: DRIVES]
FYPERN
          50
PREPRS
          FHP
                PREPROCESSOR FOR EXPER, A COMPUTER ASSISTED INST. LANG.
水水水水水水水水水水水水水水水水水水中 DE--DEMON STRATION水水水水水水水水水水水水水水水水水水水水水水水水水水水水
                CONSTRUCTS MAZES
                                     EACH UNIQUE
AMAZE
BLKJAK
          В
                THE COMPUTER DEALS BLACKJACK
POPING
          В
                POPULATION PROJECTIONS FOR AN AREA
                PRIME FACTORIZATION OF A NUMBER
PRIME
          P
                A HOLIDAY SING-ALONG, CHRISTMAS CARD AND GREETINGS
XMAS
FP-S A CALENDER DATING ROUTINE
ADATER
CATALOG
                CATALOG OF SERIES 6000/600 T/S LIBRARY (THIS FILE)
 CONVRT
          B
                CONVERTS MEASUREMENTS FROM ONE SCALE TO ANOTHER
 DBL SØRT
          FS
                SØRT TWØ ARRAYS
 DESEQ
          FP
                STRIPS LINE SEQUENCE NUMBERS FROM A FILE
REFORM
          FP
                REFORMATS A 'NFORM' FORTRAN SOURCE FILE TO 'FORM'
RLINE
          FS
                READS LINE, OPTIONALLY STRIPS LINE # & COUNTS ENTRIES
 SGLSØRT
          FS
                SØRT AN ARRAY
          FS
                TABLE SEARCH
 TI . 119
                SØRT THREE ARRAYS
 TPL SØRT
          FS
```

END OF CATALOG

SIMULATION

This Fortran program converts numbers from one base to another.

INSTRUCTIONS

After the computer requests an input line by typing an equal sign (=), enter BIN, BOUT, DIG, NUM

separated by commas, where

BIN is the base of the input number.

BOUT is the base to which the number is to be converted.

DIG is the number of digits in the fractional part of the output number to be printed, if applicable.

NUM is the number to be converted. If the input base is greater than 10, separate the digits with blanks, and precede the 'decimal point' with a blank.

If a base is set to 0, the number will be interpreted as a floating-point number expressed in octal format. If a base is set to -1, the number will be input or output in Fortran E format.

Alternate forms of input are:

BIN, BOUT, NUM

or

DIG, NUM

or

NUM

In these cases, the previously defined values of the deleted parameters are used.

The program will continue asking for new input until a null response is given.

NOTE: The program does not check to see if the digits of the input number are consistent with the input base.

SAMPLE PROBLEM

Convert 483 and 77241 from base 10 to base 8. Convert 614.35 from base 10 to base 8, carrying the answer to the ten-thousandths place. Convert (12)(3) 14).(11)(1) from base 16 to base 8, printing 10 digits in the fractional part. Then convert 140200 from Fortran E format to the floating-point octal format and then back to Fortran E format.

SAMPLE SOLUTION

*RUN ENTER ? FOR INSTRUCTIONS

=10,8,483 (8)743

=77241 (B)226671

84,614.35(8)1146.2631

=16,8,10,12 3 14 · 11 1 (8)6076·5420000000

=-1.0,140200. (0)044421650000

=0,-1,044421650000 (-1) 0.14020000E 06

This Fortran subroutine finds the 0's of a complex polynomial.

REFERENCES

This algorithm was originally published as "Algorithm 419," Communications of the ACM, Vol. 15, February 1972, page 97. It is reprinted here by permission of the Association for Computing Machinery.

METHOD

The routine finds the 0's of a complex polynomial one at a time in roughly increasing order of modulus and deflates the polynomial to one of lower degree. It uses the three stage algorithm of Jenkins and Traub. The timing is quite insensitive to the distribution of 0's.

INSTRUCTIONS

The calling sequence is

CALL CPOLY(OPR,OPI, DEGREE, ZEROR, ZEROI, FAIL)

OPR, OPI

double-precision vectors of read and imaginary

parts of the coefficients in order of decreasing

powers.

DEGREE

integer degree of polynomial

ZEROR, ZEROI

output double-precision vectors of real and

imaginary parts of the 0's.

FAIL

output logical parameter, true only if leading coefficient is 0 or if the routine has found fewer

than DEGREE 0's.

RESTRICTIONS

The algorithm will accept polynomials of maximum degree 49.

CPOLY-2

SAMPLE PROBLEM

Find the roots of the complex polynomial $X^5 + (3+i) X^4 + (3+i) X^3 + (3+i) X^2 + (3+i) X + (2+i)$

SAMPLE SOLUTION

The following is a driver program written to solve the sample problem. The results follow:

*LIST

```
10 LØGICAL FAIL
20 DØUBLE PRECISION ØPR(6), ØPI(6), ZERØR(5), ZERØI(5)
30 DATA ØPR/1.DO, 4*3.DO, 2.DO/, ØPI/0.DO, 5*1.DO/
40 CALL CPØLY(ØPR, ØPI, 5, ZERØR, ZERØI, FAIL)
50 PRINT, "FAIL = ", FAIL
60 PRINT, "SØLUTIØN VECTØR"
70 PRINT 10, (ZERØR(I), ZERØI(I), I=1, 5)
80 10 FØRMAT(1X, 2D25.18)
90 STØP
100 END
```

READY

NORMAL TERMINATION

郼

This Fortran program finds the 0's of a complex polynomial using the subroutine CPOLY.

INSTRUCTIONS

The library subroutine CPOLY must be referenced in the RUN list (see Sample Solution). Enter the complex coefficients in order of decreasing powers when requested by the program. The program will continue requesting additional polynomials until 0 is entered as the degree. The program will accept polynomials of maximum degree 49.

SAMPLE PROBLEM

Find the roots of the complex polynomial $X^5 + (3+i) X^4 + (3+i) X^3 + (3+i) X^2 + (3+i) X + (2+i)$

```
CPOLY-DR-2
```

SAMPLE SOLUTION

*RUN CPOLY-DR; CPOLY = (CORE=20)

ENTER DEGREE = 0 TO STOP

DEGREE OF POLYNOMIAL

*5

**DEFFICIENTS IN ORDER OF DECREASING POWERS

REAL PART, IMAGINARY PART, ETC.

*1,0, 3,1, 3,1, 3,1, 2,1.

SOLUTION VECTOR (CARTESIAN COORDINATES) REAL IMAGINARY

3.09016994374947424D-01	9.51056513295153572D-01
-8.09016994374947424D-01	5.87785252292473129D-(1
-8.09016994374947424D-01	-5.87785252292473128D-01
3.09016994374947425D-01	-9.51056516295153572D-01
-2-00000000000000000 00	-1-00000000000000000000000000000000000

SOLUTION VECTOR (POLAR COORDINATES)

R

THETA

1.000000000000000000	00	7.1999999999999943D	01
1.00000000000000000	00	1 · 44000000000000004D	02
1.00000000000000000D	00	-1 · 44000000000000004D	02
1 -00000000000000000	00	-7.1999999999999943D	01
2.23606797749978970D	00	-1.534349488229220170	02

DEGREE OF POLYNOMIAL =0

NORMAL TERMINATION

The Fortran subroutine, EIGNHC, finds the eigenvalues and eigenvectors of a complex non-Hermitian matrix. It also has the capability to determine a specified set of the eigenvectors.

INSTRUCTIONS

The calling sequence is:

CALL EIGNHC (A, NC, NV, ROOT, VECT, TEMP1, TEMP2, ITEMP3, IDIMA)

where,

- A is the complex matrix containing the eigenvalues and eigenvectors.
- NC is the order of the matrix, i.e., A is the NC by NC matrix.
- NV determines which vectors are found. If
 - a. NV .GT. O, finds the eigenvectors associated with the NV eigenvalues of largest modulus.
 - b. NV .LT. O, finds the eigenvectors associated with the IABS(NV) eigenvalues of smallest modulus.
 - c. NV=O, no eigenvectors found.
- ROOT is the 1-dimensional complex array of the eigenvalues.
- VECT is the 2-dimensional complex array of the eigenvectors. The eigenvector corresponding to the Ith eigenvalue is stored columnwise in the Ith column of VECT.
- TEMP1 is a 2-dimensional complex array used internally. It is dimensioned as follows: TEMP1(IDIMA, NC).
- TEMP2 is a 2-dimensional complex array used internally. It is dimensioned as follows: TEMP2(IDIMA, 2).
- ITEMP3 is a 2-dimensional integer array used internally. It is dimensioned as follows: ITEMP3 (IDIMA, 2).
- IDIMA is the first dimension of the following arrays:
 A, VECT, TEMP1, TEMP2, ITEMP3.

12/72 DA43A

RESTRICTIONS AND METHOD

- 1. After control is returned to the main program following a call to EIGRNS (EIGCNH), the routine may be entered again to find the eigenvectors of the transpose of A. This option must be used carefully, with the following restrictions
 - a. The transpose of A must be stored before the first call to EIGNHC since the routine destroys A.
 - b. The array ROOT must be the same in both calls to the routine since it contains the eigenvalues of A and, therefore, of A transpose: because of this, the second call to the routine does not recompute eigenvalues of A transpose.

 Therefore, no change can be made to the ROOT array before the second entry into EIGNHC.
 - c. The reentry to the routine must be made with a minus NC in place of NC. This informs the routine that it already has the eigenvalues of A transpose which are stored in ROOT.
 - d. Upon reentering, NV need not be the same as it was in the original entry.

This option provides the capability of solving the complete eigen problem, assuming the Jordan form D of A is diagonal. If X designates the matrix whose columns are eigenvectors of A, and Y designates the matrix whose columns are eigenvectors of A transpose, with proper scaling of X and Y, the following relations hold:

AX =XD (AT=A transpose, YT=Y transpose)

(AT)Y =YD

(YT)X =I (Scaling required to produce unit diagonal elements)

(YT)AX =D (The diagonal matrix D has the eigenvalues on the diagonal)

- 2. The eigenvectors returned by EIGNHC are normalized so that the largest component is 1.
- 3. It is suggested that the user check the modulus of the first component of each eigenvector after a call to EIGNHC. If the modulus is equal to 2., the routine has failed to determine the particular eigenvector. To determine the modulus use the CABS function.

REFERENCES

- 1. Francis, J.G.F., "The QR Transformation, A Unitary Analog to the LR Transformation," Part I, Computer Journal, Oct., 1961, 265-271.
- 2. _____, Part II, Computer Journal, Jan., 1962, 332-345.

- 3. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford Press, 1965.
- 4. G.E. TIS #67SD335, Eigenvalues and Eigenvectors of Non-Hermitian Matrices, by F. E. Lilley and A.T. Ross, G.E. Technical Information Exchange, P.O. Box 43, Bldg. 5; Schenectady, N.Y. 12301

SAMPLE PROBLEM

Given the matrix

$$A = \begin{bmatrix} 2-i & 0 & i \\ 0 & 1+i & 0 \\ i & 1-i & 2-i \end{bmatrix}$$

find all the eigenvalues and eigenvectors of A and A transpose.

EIGNHC-4

SAMPLE SOLUTION

10	25	PARAMETER MAX=10
20		IMENSION A(MAX, MAX), AA(MAX, MAX), ITEMP3(MAX, 2)
30	THE RESIDENCE OF THE PARTY OF T	OMPLEX TEMPI (MAX, MAX), ROOT (MAX), TEMP2 (MAX, 2), VECT (MAX, MAX)
40		OMPLEX VECT2 (MAX, MAX), A, AA
50		PRITE(6, 1006)
<i>M</i> 0		READ , NC
70		F(NC ·LE· O) STØP
80		RITE(6,1007)
90		READ . NV
100	AND THE PROPERTY OF THE PROPER	WRITE(6,1008)
110		READ ((A(I,J),J=1,NC),I=1,NC)
120		D0 10 I=1,NC
130		D0: 10 J=1, NC
140	10	$AA(J_0I)=A(I_0J)$
150		CALL EIGNHC (A, NC, NV, ROOT, VECT, TEMP1, TEMP2, ITEMP3, MAX)
160	NATIONAL ENGINEERS CONTRACTOR CON	2F (NV)15,50,15
170	15	CALL EIGNHC (AA, - NC, NV, ROOT, VECT2, TEMP1, TEMP2, ITEMP3, MAX)
180		WRITE(6,1004)
190		IF(N)20,50,25
200	20	K=NC+NV+1
210		KK=NC
220	integlitätikooniska krittavittin viroonaaten altitudu.	<u>60 TO</u> 30
230	25	K and 1
240	PARTICIPAL DE LO PERSONA DE LA CONTRACTOR DE LA CONTRACTO	KK=NV
250	30	DØ 40 I=K,KK
250		WRITE(6,1002)I, ROOT(I)
270		WRITE(6,1009)1
280	40	WRITE(6,1003)(VECT(J,I),J=1,NC)
290		WRITE(6,1005)
300		D0 45 I=K,KK
310		WRITE(6,1002)1,R00T(1)
320		WRITE(6,1009)I
330	45	WRITE(6,1003)(VECT2(J,1),J=1,NC)
340		G0 T0 1
350		DØ 60 I=1,NC
360	60	WRITE(6,1002)I,R00T(1)
370	***************************************	GO TO 1
etimologica de la companya del companya del companya de la company		FORMAT(/ EIGENVALUE 13, 1: 1,2F12.6)
		FORMAT(15X,2F12.6)
		FORMAT(////25x, 'MATRIX'/20x, 'REAL', 6x, 'IMAGI NARY')
		FORMAT (////18X, 'MATRIX TRANSPOSE'/20X, 'REAL', 5 X, 'IMAGI MARY')
and the second second second	THE RESERVE AND ADDRESS OF THE PARTY.	FORMAT(/// 'ENTER ORDER OF MATRIX')
430		FORMAT (/ 'ENTER NV CODE')
440		FORMAT (/ 'ENTER MATRIX BY ROWS')
450	1009	FORMAT(' EIGENVECTOR', 13, ':')
450		END

*RUN *; EIGNHC=(CØRE=26)

ENTER ØRDER ØF MATRIX =3

ENTER NV CØDE =3

ENTER MATRIX BY ROWS
=2,-1, 0, 0, 0, 1
=0, 0, 1, 1, 0, 0
=0, 1, 1,-1, 2,-1

		MATRIX		
		REAL	IMAGINARY	
EIGENVALUE EIGENVECTØR	1:	2.000000	-2.000000	
	• •	-1.000000 0.	-0.000000	
		1.000000	0.	
EI GENVALUE EI GENVECTØR	2:	2.000000	-0.000000	
		1.000000	0.000000	
		-0.000000	0.000000	
		1.000000	0.	
EIGENVALUE EIGENVECTOR		1.000000	1.000000	
		-0.300000	0.100000	
		1.000000	0.	
		-0.700000	-0.100000	
		MATRIX TRA		
		REAL	IMAGINARY	
EIGENVALUE EIGENVECTØR	***	2.000000	-2.000000	
		-1.000000	0.	
		0.400000	0.200000	
		1.000000	0.	
EIGENVALUE EIGENVECTØR	2:	2.000000	-0.000000	
		1.000000	0.	
		1.000000	0.	
		1.000000	0.	
EIGENVALUE EIGENVECTØR	3:	1.000000	1.000000	
		0.000000	0.000000	
		1.000000	0 •	
		0.000000	0.000000	

ENTER ØRDER ØF MATRIX =0

This Fortran subroutine finds the eigenvalues and eigenvectors of a real, nonsymmetric matrix. It also has the capability to determine a specified subset of the eigenvectors.

INSTRUCTIONS

The calling sequence for EIGNSR is:

CALL EIGNSR (A, NC, NV, ROOT, VECT, TEMP1, TEMP2, ITEMP3, IDIMA) where

- A is the real matrix containing the eigenvalues and eigenvectors.
- NC is the order of the matrix, i.e., A is a NC by NC matrix.
- NV determines which vectors are found. If
 - a. NV.GT.O, finds the eigenvectors associated with the NV eigenvalues of largest modules.
 - b. NV.LT.O, finds the eigenvectors associated with the IABS(NV) eigenvalues of smallest modules.
 - c. NV=O, no eigenvectors found.
- ROOT is the 1-dimensional complex array of the eigenvalues.
- VECT is the 2-dimensional complex array of the eigenvectors. The eigenvector corresponding to the Ith eigenvalue is stored columnwise in the Ith column of VECT.
- TEMP1 is a 2-dimensional complex array used internally. It is dimensioned as follows: TEMP1(IDIMA, NC).
- TEMP2 is a 2-dimensional complex array used internally. It is dimensioned as follows: TEMP2(IDIMA, 2).
- ITEMP3 is a 2-dimensional integer array used internally. It is dimensioned as follows: ITEMP3(IDIMA, 2).
- IDIMA is the first dimension of the following arrays: A, VECT, TEMP1, TEMP2, ITEMP3.

RESTRICTIONS AND METHOD

- 1. After control is returned to the main program following a call to EIGNSR, the routine may be entered again to find the eigenvectors of the transpose of A. This option must be used carefully, with the following restrictions:
 - a. The transpose of A must be stored before the first call to EIGNSR since the routine destroys A.
 - b. The array ROOT must be the same in both calls to the routine since it contains the eigenvalues of A and, therefore, of A transpose; because of this, the second call to the routine does not recompute eigenvalues of A transpose. Therefore, no change can be made to the ROOT array before the second entry into EIGNSR.

- c. The reentry to the routine must be made with a minus NC in place of NC. This informs the routine that it already has the eigenvalues of A transpose which are stored in ROOT.
- d. Upon reentering, NV need not be the same as it was in the original entry.

This option provides the capability of solving the complete eigen problem, assuming the Jordan form D of A is diagonal. If X designates the matrix whose columns are eigenvectors of A, and Y designates the matrix whose columns are eigenvectors of A transpose, with proper scaling of X and Y, the following relations hold:

- 2. The eigenvectors returned by EIGNSR are normalized so that the largest component is 1.
- 3. It is suggested that the user check the modulus of the first component of each eigenvector after a call to EIGNSR. If the modulus is equal to 2., the routine has failed to determine the particular eigenvector. To determine the modulus use the CABS function.

REFERENCES

- 1. Francis, J.G.F., "The QR Transformation, A unitary Analog to the LR Transformation," Part I, Computer Journal, Oct., 1961, 265-271.
- 2. _____,Part II,<u>Computer Journal</u>, Jan., 1962, 332-345.
- 3. Wilkinson, J.H., <u>The Algebraic Eigenvalue Problem</u>, Oxford Press, 1965.
- 4. G. E. TIS #67SD335, Eigenvalues and Eigenvectors of Non-Hermitian Matrices, by F. E. Lilley and A. T. Ross, G.E. Technical Information Exchange, P.O. Box 43, Bldg. 5; Schenectady, N.Y. 12301

SAMPLE PROBLEM

Given the following matrices

A=
$$\begin{bmatrix} 1 & -1 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ 1 & 0 & -1 & 1 \end{bmatrix}$$
, B= $\begin{bmatrix} -2 & -8 & -12 & 1 \\ 1 & 4 & 4 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ C= $\begin{bmatrix} 3 & 2 & 2 & -4 & 1 \\ 2 & 3 & 2 & -1 & 1 \\ 1 & 1 & 2 & -1 & 1 \\ 2 & 2 & 2 & -1 & 1 \end{bmatrix}$

find all eigenvalues and eigenvectors of A and A transpose, all eigenvalues of B, and the two largest eigenvalues and their associated eigenvectors of C and C transpose.

EIGNSR-4

SAMPLE SOLUTION

```
10
         PARAMETER MAX=10
20
         DIMENSION A(MAX, MAX), AA(MAX, MAX), ITEMP3(MAX, 2)
30
         COMPLEX TEMPI (MAX, MAX), ROOT (MAX), TEMP2 (MAX, 2), VECT (MAX, MAX)
         COMPLEX VECT2(MAX, MAX)
40
50
       1 WRITE(6,1006)
         READ , NC
IF (NC .LE. 0) STOP
60
70
80
         WRITE(6,1007)
90
         READ , NV
100
          WRITE(6, 1008)
          READ , ((A(I, J), J=1, NC), I=1, NC)
110
120
          DØ 10 I=1.NC
130
          DØ
              10 J=1, NC
       10 AA(J, I)=A(I, J)
140
150
          CALL EIGNSR(A, NC, NV, ROOT, VECT, TEMP1, TEMP2, ITEMP3, MAX)
150
          IF (NV)15,50,15
       15 CALL EIGNSR(AA, -NC, NV, ROOT, VECT2, TEMPI, TEMF ?, ITEMP3, MAX)
170
180
           WRITE(6, 1004)
190
          IF(NV)20,50,25
200
          K=NC+NV+1
      20
210
          KK=NC
          GØ TØ 30
220
230
       25 K=1
240
          KK=NV
250
       30 DØ 40 I=K.KK
260
           WRITE(6,1002)1,R00T(1)
270
           WRITE(6, 1009) 1
280
       40 WRITE(6,1003)(VECT(J,1),J=1,NC)
290
           WRITE(6, 1005)
300
          DØ 45 I=K.KK
           WRITE(6,1002) I, ROOT(I)
310
350
           WRITE(6,1009)I
330
       45 WRITE(6,1003)(VECT2(J,1),J=1,NC)
340
           GØ TØ 1
       50 DØ 60 I=1.NC
350
35 0
       60 WRITE(6,1002) 1, ROUT(1)
370
           GO TO 1
380 1002 FORMAT(/ ' EIGENVALUE', 13, ': ', 2F12.6)
    1003 FORMAT(15X,2F12.6)
390
    1004 FORMAT(////25x, "MATRIX"/20x, "REAL", 6x, "IMAGI NARY")
400
410 1005 FØRMAT(////18%, "MATRIX TRANSPOSE"/20%, "REAL ", " " "IMAGI HARY")
420 1006 FORMAT(///'ENTER ORDER OF MATRIX')
430 1007 FORMAT ( 'ENTER NV CODE')
440 1008 FORMAT(/'ENTER MATRIX BY ROWS')
450 1009 FORMAT(' EIGENVECTOR', 13, ':')
           END
460
```

READY

*RUN *JEIGNSR*(CORE=25)

ENTER ORDER OF MATRIX

ENTER NV CODE

ENTER MATRIX BY ROWS

= 1, -1, -1 = 1, -1, 0 = 1, 0, -1

		MATE)
		REAL	IMAGINARY
EIGENVALUE EIGENVECTOR	1 8	-0.000000	-1-000000
		1.000000 0.500000 0.500000	0. 0.500000 0.500000
EIGENVALUE EIGENVECTØR	S:	-0.000000	1.000000
		1.000000 0.500000 0.500000	0. -0.500000 -0.500000
EIGENVALUE EIGENVECTOR	3: 3:	-1-000000	0.
		0.000000 1.000000 -1.000000	0 • 0 •

	MATRIX	TRANSI	PØSE
	REAL		IMAGINARY
13	-0.0000	000 -	-1 -000000
			0.
			-0-500000
	-0.0000		-0-500000
2: 2:	-0.0000	00	1.000000
	1.0000	00	0 •
	-0.5000	00	0.500000
	-0.5000	00	0.500000
3: 3:	-1.0000	00	0 •
	-0.0000	00	0.
	1-0000	00	0.
	-1.0000	00	0 •
	2: 2:	REAL 1: -0.0000 1: 1.0000 -0.5000 -0.5000 2: -0.0000 -0.5000 -0.5000 3: -1.0000 3: -0.0000 1.0000	1: -0.000000 - 1:

```
ENTER NV CODE
=0
ENTER MATRIX BY ROWS
=-2, -8, -12
= 1, 4, 4
= 0, 0, 1
EIGENVALUE 1:
                                  0.
                    0.
EIGENVALUE 2:
                    S.000000
                                  0 .
EIGENVALUE 3:
                    1.000000
                                  0.
ENTER ORDER OF MATRIX
=4
ENTER NV CODE
=5
ENTER MATRIX BY ROWS
=3, 2, 2, -4
=2, 3, 2, -1
=1, 1, 2, -1
=2, 2, 2, -1
                          MATRIX
                     REAL
                                IMAGINARY
                    3.000000
EIGENVALUE 1:
                                  0.
EIGENVECTOR 1:
                    0.000000
                                  0 .
                    1.000000
                                 0.
                    0.333333
                                  0.
                    0.666557
                                  0.
EIGENVALUE 2:
                    2.000000
                                  0.
EIGENVECTOR 2:
                   -0.500000
                                  0 .
                    1.000000
                                  0.
                    0.250000
                                  0.
                    0.500000
                                  0.
                   MATRIX TRANSPOSE
                                IMAGINARY
                     REAL
                    3.000000
EIGENVALUE 1:
EIGENVECTOR 1:
                   -0.666567
                                  0 .
                   -0.666667
                                  0 .
                   -0.655667
                                 0.
                    1.000000
                                  0 .
                    2.000000
                                  0 .
EIGENVALUE 2:
EIGENVECTOR 2:
                                  0.
                   -0.500000
                   -0.500000
                                  0 .
                    -0.500000
                                  0.
                                  0 .
                    1.000000
ENTER ORDER OF MATRIX
E()
NORMAL TERMINATION
```

ENTER ORDER OF MATRIX

=3

DA43A

This Fortran subroutine solves a system of simultaneous linear equations with symmetric double-precision coefficient matrix. Advantage is taken of the symmetry to save time and storage.

INSTRUCTIONS

The calling sequence is:

IER=K

CALL LINSD (A, B, NA, NB, EPS, IER, AUX, IDIM)

where

- A is the name of a double-precision, single-dimension array in which the upper triangle of the coefficient matrix is stored columnwise in NA*(NA+1)/2 successive locations. A is destroyed by the subroutine.
- B is the name of a double-precision, double-dimension NA by NB array containing the right-hand side vectors. On return, B contains the solution vectors.
- NA is the number of equations in the system.
- NB is the number of right-hand side vectors.
- EPS is a single-precision criterion for determining possible loss of significance.
- IER is an error return as follows:

IER=0 indicates no error.

IER=-1 indicates no result because NA was less than

1, or a pivot element was equal to 0 during elimination, indicating A may be singular.

cimmation, indicating A may be singula:

is a warning of possible loss of significance at elimination step K+1. Calculations are

continued.

- AUX is a double-precision auxiliary storage array with dimension NA-1.
- IDIM is the first dimension of B assigned by the dimension statement of the main program.

METHOD

- 1. Gaussian Elimination is used with pivoting in the main diagonal only, to preserve symmetry.
- 2. An error return of IER=K indicates that at elimination step K+1, the absolute value of pivot element < AM*EPS, where AM equals the maximum absolute value of the main diagonal elements of A. If EPS=10^{-L}, a return of IER=K may be interpreted as indicating a possible loss of L significant digits at elimination step K+1, and, with well-conditioned A and appropriate EPS, that A may have a rank of K. A relative tolerance of 10⁻¹⁴ to 10⁻¹⁶ is suggested.

LINSD-2

SAMPLE PROBLEM:

Solve the linear system AX=1, where I is the identity matrix and

$$A = \begin{pmatrix} 26. & 8. & 9. & 0. & 0. \\ 8. & 40. & 6. & 24. & 0. \\ 9. & 6. & 14. & 18. & 10. \\ 0. & 24. & 18. & 65. & 35. \\ 0. & 0. & 10. & 35. & 25. \end{pmatrix}$$

SAMPLE SOLUTION

010	DOUBLE PRECISION A(15), B(5,5), AUX(4)
020	DATA A /26.DO. 8.DO. 40.DO. 9.DO. 6.DO. 14.DO.
030&	0.D0, 24.D0, 18.D0, 65.D0,
035&	0.D0, 0.D0, 10.D0, 35.D0, 25.D0/
040	DATA B /25 * 0.0D0/
050	DØ 10 I=1.5
060 10	B(I,I) = 1.000
070	CALL LINSD (A, B, 5, 5, 1.D-15, IER, AUX, 5)
080	WRITE (6, 102) IER
090 102	FORMAT (' IER = ', IS)
100	WRITE (6, 111) ((B(I,J),J=1,5), I=1,5)
110 111	FORMAT ("SOLUTION MATRIX IS" / (5G14.6))
120	STOP
130	END

READY

*RUN *;LINSD=(C@RE=16K)
IER = 0
SØLUTIØN MATRIX IS

1.000000	-2.00000	-1-00000	3-25000	-4-15000
-2.00000	4.25000	2.00000	-6 -87500	8 -82500
-1-00000	2.00000	1 - 1 1 1 1 1	-3.27778	4.14444
3.25000	-6-87500	-3.27778	11-1944	-14.3611
-4.15000	8 • 82 500	4.14444	-14-3611	18 4878

NORMAL TERMINATION

This Fortran subroutine solves a system of simultaneous linear equations with symmetric single-precision coefficient matrix. Advantage is taken of the symmetry to save time and storage.

INSTRUCTIONS

The calling sequence is:

CALL LINSS (A, B, NA, NB, EPS, IER, AUX, IDIM)

where

- A is the name of a single-precision, single-dimension array in which the upper triangle of the coefficient matrix is stored columnwise in NA*(NA+1)/2 successive ocations. A is destroyed by the subroutine.
- B is the name of a single-precision, double-dimension NA by NB array containing the right-hand side vectors. On return, B contains the solution vectors.
- NA is the number of equations in the system.
- NB is the number of right-hand side vectors.
- EPS is a single-precision criterion for determining possible loss of significance.
- IER is an error return as follows:
 - IER = 0 indicates no error.

 - IER = K is a warning of possible loss of significance at elimination step K+1. Calculations are continued.
- AUX is a single-precision auxiliary storage array with dimension NA-1.
- IDIM is the first dimension of B assigned by the dimension statement of the main program.

METHOD

- 1. Gaussian Elimination is used with pivoting in the main diagonal only, to preserve symmetry.
- 2. An error return of IER=K indicates that at elimination step K+1, the absolute value of pivot element < AM*EPS, where AM equals the maximum absolute value of the main diagonal elements of A. If EPS=10^{-L}, a return of IER=K may be interpreted as indicating a possible loss of L significant digits at elimination step K+1, and, with well-conditioned A and appropriate EPS, that A may have a rank of K. A relative tolerance of 10⁻⁶ to 10⁻⁷ is suggested.

12/72 DA43A

LINSS-2

SAMPLE PROBLEM

Solve the linear system AX=1, where I is the identity matrix and

$$A = \begin{pmatrix} 26. & 8. & 9. & 0. & 0. \\ 8. & 40. & 6. & 24. & 0. \\ 9. & 6. & 14. & 18. & 10. \\ 0. & 24. & 18. & 65. & 35. \\ 0. & 0. & 10. & 35. & 25. \end{pmatrix}$$

SAMPLE SOLUTION

010	DIMENSION A(15), B(5,5), AUX(4)
050	DATA A /26., 8., 40., 9., 6., 14.,
0304	0., 24., 18., 65., 0., 0., 10., 35., 25./
040	DATA B /25 * 0.0/
050	DØ 10 I=1,5
060 10	B(I,1) = 1.0
070	CALL LINSS (A, B, 5, 5, 1.E-7, IER, AUX, 5)
080	WRITE (6, 102) IER
090 102	FORMAT (* 1ER = *, 15)
100	WRITE (6, 111) ((8(1,J),J=1,5), I=1,5)
110 111	FORMAT (SOLUTION MATRIX IS / (5G14.5))
120	STOP
130	END

READY

*RUN *;LINSS=(CORE=18K) IER = 0 SOLUTION MATRIX IS 1.00000 -2.0000 -1.00000 3.2500 -4 -1500 -2.0000 4-2500 5.0000 -6.8750 8-8250 -1.00000 2.0000 1 0 1 1 1 1 -3.2778 4 - 1 4 4 4 3.2500 -6.8750 -3.2778 11.194 -14.36! -4.1500 8 • 8250 4.1444 -14-361 18 -488

NORMAL TERMINATION

24t

This Fortran subroutine transposes a matrix. The transposed matrix may be stored in either a distinct array or the same array as the original matrix.

INSTRUCTIONS

The calling sequence for this routine is:

CALL MTRAN (IR, IC, A, IA, B, IB)

where

IR is the number of rows of input matrix (number of columns of output matrix)

IC is the number of columns of input matrix (number of rows of output matrix)

A is the input matrix

IA is the row (first) dimension of A

B is the output matrix

IB is the row (first) dimension of B

The A and B arrays may be either the same array or distinct arrays.

SAMPLE PROBLEM

Transpose the matrix

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

SAMPLE SOLUTION

```
*10 DIMENSION A(5,6)
*20 DØ 10 1=1,4
*30 A(1,1)=1
*40 10 A(2,1)=1+4

*50 PRINT,"ØRIGINAL MATRIX:"

*60 PRINT 20, ((A(1,J),J=1,4),1=1,2)
* 70 20 FØRMAT(1X, 4F3.0)
*80 CALL MTRAN(2, 4, A, 5, A, 5)
*90 PRINT, "TRANSPOSED MATRIX:"
*100 PRINT 30, ((A(I,J),J=1,2),I=1,4)
*110 30 FORMAT(1X,2F3.0)
*120 STØP
*130 END
*RUN *SMTRAN
GRIGINAL MATRIX:
 1. 2. 3. 4.
5. 6. 7. 8.
TRANSPOSED MATRIX:
 1. 5.
 2. 6.
 3. 7.
```

NORMAL TERMINATION

zķt

4. 8.

This BASIC program integrates a function by spline fits, with the function defined by possibly unequally spaced data points.

INSTRUCTIONS

Starting with statement number 700, the first DATA statement must be the number of pairs of x and y. The DATA statements that follow must contain the values of x and y. After the data is entered, type RUN.

SAMPLE PROBLEM

Find the integral between 0 and 1 of the function described by the table below.

-	TOTAL MINISTER CONTRACTOR CONTRACTOR	***************************************			WARRY THE RESIDENCE OF THE PERSON NAMED IN COLUMN		THE RESIDENCE OF THE PERSON OF	CANCEL DE LA CONTRACTION DE LA	Proposition to the section of the se	NUMBER OF STREET	and the same of th
X	0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9	1.0
Y	.0	.0398	.0793	.1179	.1554	.1915	.2257	. 2580	. 2881	. 3159	. 3413

SAMPLE SOLUTION

*790	DATA	11			
*710	DATA	0.0			
*720	DATA	. 1	0398,	.20793.	.31179
* 730	DATA	.40.	1554,	-5, -1915,	.62257
*740	DATA	.7	2580,	·8 · 2881 ·	.93159
#750	DATA	1000	3413		THE PROPERTY OF THE PROPERTY O
*RUN			CO-Production of the Bostonia		

SPLINE

×	Y	INTEGRAL
o	0	0
. 1	.0398	•0019911
• 2	.0793	-0079511
• 3	-1179	-0178199
. • 4	.1554	0314948
۰ 5	•1915	.0488539
• 6	.2257	.06973
• 7	.258	-0939314
• 8	.2881	-1212573
. 9	•3159	-1514595
1	-3413	.1843773

READY

*

This BASIC program computes spline interpolation.

INSTRUCTIONS

Starting in line 1900, the first DATA statement must be the number of pairs of x and y, followed by the number of interpolation points desired. The DATA statements that follow must contain the values of x and y, followed by the x values at which interpolations are to take place. After the data is entered, type RUN.

SAMPLE PROBLEM

Given the following table, use spline interpolation to find the values of y for x = .23, .57, .65

-	-	***************************************		-		***************************************		-			-
X	0	. 1	. 2	. 3	. 4	. 5	. 6	7	. 8	. 9	1.0
Y	.0	.0398	.0793	.1179	.1554	. 1915	.2257	.2580	.2881	.3159	. 3413

SPLINT-2

SAMPLE SOLUTION:

SPLINT

10	ØF	POINTS	GIVEN	3 1	1
NØ	ØF	INTERPO	DLATED	PØINTS	3

INTERP X		INTERP Y
	.23	•0909903
	· 57	-2156386
	• 65	.2421052
ØRIGINAL	x	ORIGINAL Y
	0	o
	• 1	• 0398
	• 2	.0793
	• 3	.1179
	. 4	-1554
	• 5	.1915
	• 6	-2257
	. 7	•258
	• 8	• 2881
	۰9	• 3159
	3	.3413

READY

*