. T | TIME-SHARING
neyweﬂ Bull APPLICATIONS LIBRARY GUIDE

VOLUME Il - INDUSTRY
ADDENDUM A

SERIES 600/6000

APPLICATIONS

SUBJECT:

Additional and Revised Time -Sharing Programs,

SPECIAL INSTRUCTIONS:

This update is the first addendum to DA45, Revision 2, dated December 1972,
Sixteen new programs and nine revised programs are being added with this
addendum; these programs are listed in the revised Preface,

Insert the attached pages into the manual as indicated in the collating instruc-
tions on the back of this cover, Change bars in the margins indicate new and
changed information; asterisks denote deletions.

NOTIE: This cover should be inserted following the manual cover to
indicate the updating of the document with Addendum A,

DATE:
May 1973

ORDER NUMBER:
DA45A, Rev, 2

Printed in France Ref : 19,533,108

Al

COLLATING INSTRUCTIONS

To update the manual, remove old pages and insert new pages as follows:

Remove Insert
Title/Preface Title/Preface
iii/iv iii/iv
vii through xii vii through xiii, blank
MS-11 through MS-16 MS-11 through MS-16
' MS-16. 1 through MS-16, 3, blank
MS-23 through MS-26 MS-23 through MS-26
MS-39 through MS-42 MS-39 through MS-42
MS-43 through MS-48 MS-43 through MS-48
MS-54,1/MS-54,2
MS-61 through MS-63 MS-61 through MS-63, blank
MS-86.1 through MS-86, 5, blank
MS-91 through MS-99 MS-91 through MS-100

GP-6.1 through GP-6, 3, blank

ED-1/ED-2 ED-1 through ED- 2,1, blank
ED-3/ED-4 ED-3/ED-4
ED-5/ED-6 ED-5/ED-6
DE-3/DE -4 DE-3/DE-4

DE -4, 1 through DE-4, 3, blank

UM-0. 1 through UM-02

UM-2.1, blank

UM-2, 3 through UM-2.4

UM-2,5 through UM-2, 7, blank
UM-2,9/UM-2,10
UM-2,11/UM-2,12
UM-10,1/UM-10,2

UM-10, 3/blank v

UM-12,1 through UM-12, 3, blank
UM-12.5, blank

UM-23, blank

1973, Honeywell Information Systems Inc. File No.: 16R3, 17R3

Republique Copie 9-73
DA45A

In addition, several existing programs are revised to run on Series 6000 FORTRAN,
These programs include:

CPM TCAST
GASPIIA DRIVES
INTO1 EXPERn
INTLP PREPRS
LNPROG

A complete printing of the programs in the library is available by listing the library
program, CATALOG. A copy of this listing follows the Contents.

Other Series 600/6000 Time-Sharing Library programs are described in the following
documents:

Series 600/6000 Time-Sharing Applications Library Guide, Volume I -
Mathematics, Order Number DA43

Series 600/6000 Time-Sharing Applications Library Guide, Volume II -
Statistics, Order Number DA44

Series 600/6000 Time-Sharing Applications Library Guide, Volume IV -
Business and Finance, Order Number DA46

Series 600/6000 Time-Sharing Applications Library programs are also available to
users of the DATANETWORK service, Please contact your local Honeywell representative
for further details,

This document describes programs that originated from a variety of sources,
such as users and the Honeywell field organization. The programs and docu-
mentation are made available in the general form and degree of completeness
in which they were received., Honeywell Information Systems Inc,, therefore
neither guarantees the accuracy of the programs nor assumes support
responsibility,

?

iii DA45A

ASIGNIT
COEFS

COMBI

CPM
CsM
DAVIDON
GASPIIA
GEOSIM

GPROG
INTO1

INTLP
JSSIM
KILTER

LINPRO
LNPROG
LOGIC3
MAXFLOW
MAXOPT
OPTIM
PERT
SHORTEST
SMOOT I
ICAST
TRANSPO
UNDEQ

ENGINEERING (EN)

ACNET
BEMDES

CONTENTS

MANAGEMENT SCIENCE AND OPTIMIZATION (MS)

The Assignment Problem

Determines Seasonal Coefficients of an Observation
Series of Two Cycles

Determines Economic Order Quantity For A Group
of Items — Different Discounts

Solves Critical Path Method Problems

Non-negative Vector X to Maximize Convex Function F (X)
Davidon's Unconstrained Optimization

A FORTRAN-Based Simulation Language

Schedules Machine Shop Jobs Using Heuristic
Geometric Approach

Geometric Programming

Zionts' Modification of Balas' Routine for 0-1 Integer
Programming

Gomory's Pure and Mixed Integer Programming
Job Shop Scheduling

"Out of Kilter' Algorithm for Minimum Cost Circulation
Network Problem

Linear Programming (18 x 30 Maximum Size)
Linear Prog#amming (30 x 50 Maximum Size)
Unconstrained Non-ILinear Optimization

Finds the Maximum Flow Through a Network
Unconstrained Non-Linear Optimization
Optimum Service Level For One Inventory Item
Performs a Simple PERT Network Analysis
Calculates Shortest Path — Minimum Spanning Tree
Calculates a Smoothed Series

Performs Time Series Forecasting

An Algorithm to Solve Transportation Problems

Solutions for a System of Equations

Calculates Gain and Phase of Linear Circuit

Selects Steel Beams for Various Loads and Supports

iv

Page

MS-1

MS-3

MS-5

MS-11
MS-17
MS-21
MS-23

MS-27
MS-31

MS-39
MS-43
MS-49

MS-53
MS-55
MS-61
MS-65
MS-69
MS-71
MS-75
MS-81
MS-85
MS-87
MS-91
MS-101
MS-107

EN-1
EN-11

DA45

5/173

CATALBG BF SERIES 60007600 T-S LIBRARY PROGRAMS

FILE TYPE INDICATOR:

LANGUAGE M@ DE
(FIRST LETTERY (FOLLOWING LETTERS)

A AL GIL P (OR BLANK)> PROGRAM

B BASIC S SUBROUTINEC(S)?

C CARDIN F FUNCTIGN(S)

D DATABASIC P=$ PREGRAM WITH EXTRACTABLE SUBROUTINE(SY
E TEXT EDITOR R RELOCATABLE @BJECT (O3}

¥ FORTRAN H SYSTEM LOADABLE OBJECT (Hwy

G GMAP L USER'S RANDOM LIBRARY

ALl FILES ARE S@URCE MZDE UNLESS OTHERWISE INDICATED.

SUBJECTS DOCUMENTATION MANUAL
MATHEM&]KGS’ (MAY -noo.ooonc-o.ngRDER # DA43
INTEGRATION

DIFFERENTIATI@N, DIFFERENTIAL EQ.
INTERPBLATION
POLYN@MIALS
LINEAR EQUATIBNS
MATRICES
N@M-LINEAR EQUATIONS
SPECIAL FUNCTION EVALUATION
LAGIGC AND NUMBER THEQRY
STATISTICS (ST secesesesconc s JRDER # DA44
CURVE FITTING AND REGRESSION
ANALYSIS OF VARIANCE
PROBABILITY DISTRIBUTI@NS
CONFIDENCE LIMITS
HYP@THESIS TESTING
DESCRIPTIVE STATISTICS
RANDGM NUMBER GENERATION
MISCELLANEQUS STATISTICS
MANMAGEMENT SCIENCE AND @PTIMIZATION (MS) «.0..0RDER # DA4S
LINEAR PROGRAMMINMG
INTEGER PR GRAMING
NON=-LINEAR QPTIMIZATION
NETWORK ANALYSIS
FARECASTING
SIMULATIGN
ENGINEERING (EN)
GEGMETRIC AND PLOTTING (GP)
EDUCATIGN AND TUTORIAL (ED)
DEMBNSTRATION <(DE)
UTILITY AND MISCELLANEBUS (UM»
BUSINESS AND FINANCE (BF) sosscccsssssn e JRDER # DAAG

THE DOCUMENTATION FOR THESE PROGRAMS 1S AVAILABLE IN FOUR MANUALS?
SEE @RDER # DA43 FOR PROGRAMS IN MATHEMATICS

ORDER # DA44 FOR PROBGRAMS IN STATISTICS
BROER # DA46 FOR PRBGRAMS IN BUSINESS AND FINANCE
BRDER # DA4S FOR PROGRAMS IN ALL OTHER CATEGORIES.

SUBRBUTINES THAT ARE CALLED BY A PROGRAM AND MUST BE EXECUTED WITH IT
ARE LISTED Iv BRACKETS AT THE END OGF THE DESCRIPTI®N.

THESE PREGRAMS HAVE ALL BEEN REVIEWED AND TESTED BUT NO RESPONSIBILITY
CAN BE ASSUMED-.

vii

DA45A

R R R e R R R REREM A «MATHEMAT L C S s o e oo i e e de e e eode oo e o ol o ool g o o e o e e ode oo il e

#uk INTEGRATION®: v ¢

CLOINT FE INTEGRATIBN BY SIMPSON°S RULE

FINT FF EVALUATE FOURIER INTEGRALS BY FILON®S FORMULA
GAHER FF GAUSS-HERMITE GUADRATURE

GALA FF GAUSS~-LAGUERRE QUADRATURE

GAUSSN FE EVALUATE DEFINITE DOUBLE @R TRIPLE INTEGRALS
GAUSS@ F#E GAUSSIAN QUADRATURE

NCBATES FP=5 NEWT@N-COATES QUADRATURE

NUMINT B GAUSSIAN QUADRATURE

ROMBINT FP=-5 ROMBERG INTEGRATION

SPL INE B8 INTEGRATE TABULATED FUNCTI@N BY SPLINE FITS

w

wexDIFFERENTIATION, DIFFERENTIAL EQ.%ww

AMPBX F$ ADAMS-MBULTON FOR 1ST~0URDER DIFF. EGNS [RKPBXI
FDRVUL FF DIFFERENTIATE TABULATED FUNCTION, UNEGUAL SPACING
HDRVEB FFE DIFFERENTIATE TABULATED FUNCTION, EQUAL SPACING
RKPBX FS RUNGE-KUTTA FOR 1ST-ORDER DIFF. EGNS
* ks INTERPOLATION®
£33
SPLINT B SPLINE INTERPOLATION
TNT1 FF SINGLE LAGRANGIAN INTERPOLATION (TLULI
TNTZ FF DOUBLE LAGRANGIAN INTERPOLATION [TLULI
TNT24A FF VARIABLE DOUBLE LINEAR INTERPOLATION CTLUL]
R EPELYNIMIAL Sewn
BIC@F FS CALCULATE BIN@MIAL COEFFICIENTS
CLPLY FF EVALUATE REAL POLY AT REAL ARGUMENT
crPeLY FS FINDS ZERQGES OF A COMPLEX POLYNOMIAL
CPGLY-DR FP FINDS ZERQES OF A COMPLEX POLYNOMIAL (CPOLYI
DVALG FS POLYNGMIAL DIVISION
EUALG FS GeCoDe OF TWO POLYNIMIALS (DVALG]
MTALG FS MULTIPLY POLYNOMIALS
PLMLT FS REAL POLY COEFFICIENTS RECONSTRUCTED FROM REAL ROOTS
POLRTS Fp S@LUTIGN @F POLY BY BAIRSTOWS METHOD
P@LYC FS REAL POLY COEFFICIENTS RECINSTRUCTED FROM COMPLEX ROOTS
PALYY Fs EVALUATE REAL POLY AT COMPLEX ARGUMENT
QUADE® B SOLUTION TO QUADRATIC EQUATIONS
RBOTER 8 SOLUTIGN OF POLY BY BAIRSTOWS METHOD
Z2Cap Fp RBOTS OF POLYNOMIAL WITH CEMPLEX COEFF »
ZCape FS ROGBTS GF POLYNOMIAL WITH COMPLEX COEF. LZCOP2]
ZARP FP RAGBTS GF REAL POLY
ZBRP2 FS RIBTS BF REAL POLY
wakl INEAR EQUATIBNS#®&E
GJSIME® FS SOLVE LINEAR SYSTEMS BY GAUSS-JORDAN
GSEIDEL FP=S SOLVE LINEAR SYSTEMS BY GAUSS~-SEIDEL
LINE® FS SALVE LINEAR SYSTEMS BY GAUSSIAN ELIMINATION
LINSR e SELVE LINEAR SYSTEMS BY GAUSSIAN ELIMINATION (LINEGI
SIMEGN B SOLVE LINEAR SYSTEMS BY MATRIX INVERSION
#usMATRICES &%
DETE FF EVALUATE DETERMINANT ©F REAL MATRIX
DOMELG FP-S DOMINANT EIGENVALUES GF REAL MATRIX
EIGH FS EIGENVALUES 8F SYM MATRIX BY JACOBI METHE@D
EXGNHC FS FIGENVALUES & VECTORS OF COMPLEX NON-HERMITIAN MATRICES
EIGNSR FS EIGENVALUES & VECTGRS GF REAL NON-SYMMETRIC MATRICES
EIGSR PP FIGENVALUES AND VECTORS @F REAL SYMes MATRIX [EIGHI
LINSD Fs SOLVE LINe $YSe W/ SYMMETRIC DOUBLE PREC. COEF. MATRIX
LINSS FS SOLVE LINe SYSe W/ SYMMETRIC SINGLE PREC. COEF. MATRIX
MTINV FS MATRIX INVERSIONM BY PIVGTS
MTMPY FS MATRIX MULTIPLICATION
MTRAN FS TRANSPOSE A MATRIX
SPEIGI FS SPECIAL EIGEN PREBLEMS [(EL1G1]
SYMEIG FP EIGENVALUES 8F SyM MATRIX BY JACBBI METH@D

5/73

viii

DA45A

5/73

wEENGN-L INEAR EQUAT IONMSsw®n

BRS WN
SECANT
SBLN

LERGES

FS
FS
FF
B

SOLN @F SIMULTANEBUS SYSTEMS BY BROWN METH@D

SBLN OF SIMULTANEGUS SYSTEMS BY SECANT METHOD [MTINVI
ZERG® @F AN ARBITRARY FUNCTIGN

ZERDsMAX,MIN @F FUNCTIGN

*eeSPECIAL FUNCTION EVALUATIONS®

ARCTAN
BESL
COMP 1
comp2
CaMP3
ERRF
ERRINY
FRESNL
GAMF
JACELF
BRTHP
STIRLING
TMFCEV

FF
FS
FF
FS
F3
FF
Fy
FS
FF
FS
FF
FP=S
B8

Ao
ARCTANGENT IN RADIANS OF Y/X
BESSEL FUNCTIGON [GAMF)
EVALUATES REAL HYPERBGOLIC TRIG FUNCTIGNS
CEMPLEX MULT. AND DIVISION

EVALUATES YARIGUS FUNCTIONS FOR COMPLEX ARGUMENT (COMP2]

ERROR FUNCTIGN

INVERSE ERRGR FUNCTION

EVALUATES FRESNAL INTEGRALS

GAMMA FUNCTION)

EVALUATES JACUBIAN ELLIPTIC FUNCTIONS SN» CNs DN
EVALUATE ORTHOGONAL POLYNOMIALS

N FACTORIAL BY STIRLINGS APPROXIMATION

EVALUATE DAMPED GR UNDAMPED FOBURIER SERIES

wiklL,@GIC AND NUMBER THEZRYw®

45QRS
BASE
CONCL UDE
GCDN

R R R E TR R R E R B E eSS T = STATISTICS Skt b w e R e R ok ok e bk kb d ok d e dhE ke u ke

B
P
3
FS

"o

WRITES INTEGERS AS SUM OF SQUARES OF FOUR INTEGERS
CONVERTS NUMBERS FROM ONE BASE TO® ANOBTHER

DETERMINES LOGGICAL CONCLUSIGNS FROM PROPOSITIGNAL LOGIC
GeCeDe @F N INTEGERS

#EBCURVE FITTING AND REGRESSION®®®

CFIT
CURFIT
FORIR
FOURIER
LINEFIT
LIMREG
LSPCFP
LSamM
MREGH
MULFIT
GRPAL
PBLFIT
POLFT
SMLRP
STAT20
STaT21

FP
B
FP
B
Fs
8
FP
FS
FP
B
FpP
B
PP
FP
B
8

LEAST SQRS. POLYe WITH RESTRAINTS

FITS SiX DIFFERENT CURVES BY LEAST S@RS

LEAST SQUARES ESTIMATE OF FINITE FOURIER SERIES M@DEL
CBEFF OF FAURIER SERIES T@ APPROX A FUNCTION

LEAST SGRS LINE

L5TS@RS. BY LINEAR, EXPONENTIAL, OBR POBWER FUNCTIGN
LEAST SQRS POLYNOMIAL FIT

GENERALIZED POLY FIT BY LEAST SGRS @R MIN-MAX
MULTIPLE LINEAR REGRESSION

MULTIPLE LINEAR FIT WITH TRANSFORMATIGNS

LEAST SQRS FIT WITH ORTHAGENAL POLYS

LEAST SQRS POLYNOMIAL FIT

LEAST SQRS POLYNOMIAL FIT

MULTIPLE LINEAR REGRESSION

EFFREYMSEBN°S MULTIPLE LINEAR REGRESSION AL GORITHM
COMPUTES MULTIPLE LINEAR REGRESSIOGNS

#ERANALYSIS OF VARIANCE®w®®

ANG VA
ANVATL
ANVAJ
ANVAS
KRUWAL
ENEWAY
STAT13
STATI 4
STATLIS
STATI®
STATI7
STATI®
STAT33

FP
FP
FP
FP
FP

TODWODODODE

ONE R Twd WAy ANALYSIS OF VARIANCE

@NEWAY ANALYSIS @F VARIANCE

THREE wWaY ANALYSIS OF VARIANCE

MULTIPLE VARIANCE ANALYSIS

KRUSKAL-WALLLS 2-WAY VARIANCE [XINGAM]

GNEWAY ANALYSIS OF VARIANCE

ANALYSIS OF VARIANCE TABLE., l-WAY RANDOM DESIGN
ANALYSIS @F VARIANCE TABLE FO@R RANDOMIZED BLBCK DESIGN
ANALYSIS OF VARIANCE TABLE FOR SIMPLE LATIN-5@ DESIGN
ANALYSIS OF VARIANCE TABLE» GRAEC@~-LATIN SQUARE DESIGN
ANBVA TABLE OF BALANCED INCOMPLETE BLBCK DESIGN
ANALYSIS OF VARIANCE TABLEs YOUDEN SQUARE DESIGN
ANALYSIS OF VARIANCE TABLE, 1-WAY RANDOM DESIGN

ix

DA45A

#exPROBABILITY DISTRIBUTIGNS k%

ANPF
BETA
BINDIS
EXPLIM
PBISON
PREBC
PR@GVAR
TD1IST
XINGAM

FF
FF
B
B
FF
FP
B
FF
FF

N@RMAL PROBABILITY FUNCTION [ERRF]

BETA DISTRIBUTISN

BINGMIAL PRUBABILITIES

EXPONENTIAL DISTRIBUTIONS

PGISSON DISTRIBUTI@N FUNCTION

FREBABLITIES OF COMBINATIONS OF RANDOM VARIABLES
NERMAL AND T-DISTRIBUTIGN

T-DISTRIBUTIOGN [BETAJ

INCOMPLETE GAMA FUNCTI@N

wERCONFIDENCE LIMITS®®%

BAYES

BICGNF
BINGM

COL INR
CONBIN
CONDIF
CONLIM
STATOS
STATO6

]

[selin e ool valie e i o s I o 4]

ODIFFERENCE 0OF MEANS IN NON=-EQUAL VARIANCE

CONFe LIMITS FOR PUPULATIGN PROPORTION (BINOMIAL)Y
BINBMIAL PROBABILITIES AND CONFIDENCE BANDS
CONFIDENCE LIMITS OGN LINEAR REGRESSIONS

C@NF. LIMITS FOR POPULATION PROPORTION (NORMAL?
DIFFERENCE ©F MEANS IN EQUAL VARIANCE

CONFo LIMITS FGR A SAMPLE MEAN

CONFIDENCE INTERVAL FBR MEAN BY SIGN TEST
CONFIDENCE LIMITS, WILCOXBN SIGNED RANK SUM TEST

#kkHYPBTHESIS TESTING%

BITEST
CHISGR
CORREL
C@RRL2
KBKa
SEVPRO
STATO1}
STATQ2
STATO4
STATOS
STATCSY
STAT1
STAT1I2
TAU

nEMTME
TO I

ML DT TTW

P

e

TEST OF BINOMIAL PROPORTIONS

CHI-SQUARE CALCULATIZNS

CONTINGENCY COEFFICIENT CXINGAMI

CORRELATIGN COEFFICIENT [TDISTSBETA
KOLMOGIRBV~SMIRNGV TWO SAMPLE TEST [XINGAMI
CHI~SQUARE

MEANSs STD OF MEANs eoo » T-RATIWZ,2 GROUPS, PAIRED
MEANS», VARIANCESs AND T-RATIZ 2 GROUPSs UNPAIRED DATA
CHI-SQUARE AND PROBABILITIESs 2X2 TABLES

COMPARES TWO GROUPS OF DATA USING THE MEDIAN TEST
COMPARE 2 DATA GROUPS,MANN-WHITNEY 2-SAMPLE RANK TEST
SPEARMAN RANK CORRELATION COEF. FOR 2 SERIES @F DATA
COMPUTES CORRELATION MATRIX FOR N SERIES OF DATA
KENDALL-RANK CURRELATION

#¥¥DESCRIPTIVE STATISTICS#%w%

MANDSD
STAT

STATAN
TESTUD
UNISTA

%k RANDAM
FLAT
FLATSORC
RANDX
RNDNRM
UNTFM
UNIFMSOR
URAN
URANS@RC
XNOR}
XNG RM

B
Fp
B
B
8

FIND MEAN, VARIANCE.» STOD

FIND SEVERAL STATISTICS FOR SAMPLE DATA [ANPF3ERRF)
FIND VARIGUS STATISTICAL MEASURES

SAMPLE STATISTICS

DESCRIPTION @F UNI-VARIANT DATA

NUMBER GENERATION#®w%

GRF
G
FE
FF
GRF
C
GRF
C
FF
FF

UNIFORM RANDOM NUMBER GENERATZR

CARDIN SQ@URCE FILE FOR FLAT

RANDOM #°5, UNIFORM DIST. BETWEEN O AND |
CALCULATES NORMAL RANDOM NUMe. [FLAT)

UNLIFORM RANDGM NUMBER GENERATGR

CARDIN SBURCE FILE FOR UNIFM

UNIFORM RANDGM NUMBER GENERATAR

CARDIN S@BURCE FILE FOR URAN

NORMAL RANDOM NUMBERS, VARIABLE MEAN, STD [RANDX]
NGRMAL RANDEM NUMBERS, MEAN 0» STD 1. [RANDX)

**eMISCELLANEQUS STATISTICS®%w

FACTAN
STADES

Ut
~
)
(o8}

FpP

FACTBR ANALYSIS
EXPLANATION OF COLINR,CURFIT,MULFIT,UNISTA

DA45A

ek kR Rk R R e RMSe ~MANAGEMENT SCIENCE AND @PTIMIZATION%

W O K e g K R R
wpkl, INEAR PROGRAMMINGh k¢
ASIGNIT B THE ASSIGNMENT PROBLEM
LINPR® B LINEAR PROGRAMMING
LNPRSG G FP LINEAR PROBGRAMMING
SIMPLEX B LIMEAR PROGRAMMING BY THE SIMPLEX METHE@D
TRANSPY B THE TRANSPORTATION PRGBLEM
UNDEQ FS FINDS A SOLUTION FOR AN UNDERDETERMINED LINEAR SYSTEM
wwe INTEGER PROGRAMM LN Gk
INTOU P LZIGNTS® MIDIFICATION OF BALAS® ZERO-UGNE AL GIRITHM
INTLP PP GOMBRY 'S PURE AND MIXED INTEGER PROGRAMMING
HRENAN-LINEAR @PTIMIZATION ®d%
CoSM FS @PTIMIZE A LINEARLY CONSTRAINED CONVEX FUNCTIONLUNDE®]
DAVIDON B DAVIDIN'S UNCONSTRAINED QPTIMIZATION
GEGSIM B HEURISTIC SCHEDULING OF N JO0BS IN A M MACHINE SH@P
GPRE G FHP SOLVES GEQMETRIC PROGRAMMING PROBLEMS
GPRBG~30 C CARDIN SOURCE FILE FOR GPROUG [UNDEQsCSMI
JSSIM B SCHEDULES N JOHS IN A SHIP WITH M MACHINES
LAYQUT] GPTIMIZES A PLANT LAYOUT ACCORDING TO VOLLMANN=RUML MODL
LYGIC3 FP UNCONSTRAINED OPTIMIZATION
MAXSPT P UNCEONSTRAINED GPTIMIZATION
e NETWARK ANALYS I S#®#k
GPM FP CRITICAL PATH METHID
CPMLBAP FP DETECTS AND LISTS LBIPS IN A CFM NETWIRK
KILTER FPR TRUT OF KILTER® ALGURITHM (MINIMUM CJIST CIRCULATION?
MAXFLO W P MAXIMUM FLOW THRU NETWJIRK
PERT B SIMPLE ANALYSIS @F A PERT NETWORK
SHBRTEST FP SHORTEST PATH = MIN SPANNING TREE
s FORECAST IN Gk
CAEFS B DETERMINE SEASONAL COEFFICIENTS 6N TWO CYCLES
COMB I B DETERMINES ECANIMIC ORDER QUANITY FOR INVENTORY 1TEMS
WPTIM F GPTIMUM SERVICE LEVEL FOR ONE INVENTURY ITEM
SMBGTH FS TRIPLE SM@BTHING @F A TIME SERIES
TCAST FHP TIME SERIES FORECASTING
eSS IMULAT IQON ok
GASPDATA K DATA FILE FOR SAMPLE PROGRAM GASPSAMP
GASPILIA FS "GASP® SIMULATION SYSTEM
GCASPSAMP FP SAMPLE PROGRAM F3R GASPIIA [GASPII1A3 GASPDATA]

e e ot ok g i ofe ool e g dok ol R BN = - ENGINEER TN G ok o b s e ook e ot e skodeoe oo ol ol 0k g oo g0 ook ol kol ok

ACNET FP FREQUENCY RESPONSE @F A LINEAR CIRCULT
BEMDES B STEEL BEAM SELECTION

GCVSIZ B GAS CONTROL VALVE COEFF.

LCVSIC B LIQUID CONTROL VALVE COEFF.

LFILTR B SYNTHESIZES ACTIVE LOW-PASS FILTERS (LFLDAT)
LFLDAT DATA FOR LFILTR

LFLTIN INSTRUCTIGNS FOR LFILTR

LPFILT B DESIGN LOW PASS FILTERS

NLNET Fp GENERAL STEADY-STATE CIRCUIT ANALYSIS

arTTo @TTY CYCLE @F ENGINE

B
PAVELT B CALCULATES 8 COST AND TONS OF MATERIAL T2 PAVE A ROAD
PVT FpP FINDS MOLAR VOLUME OF A GAS GIVEN TEMPERATURE AND PRES.
SCVS1zZ B STEAM CONTROL VALVE COEFF.

SECAP B STEEL SECTION CAPACITIES

5/73 xi DA45A

Rk kR E XK ERERER RGP~ GEOMETRIC AND PLOTT IN Golodofodfode g0 doobe e deofe feofe e ol de o e e e o

CIRCLE B DIVIDES A CIRCLE INTO N EG@UAL PARTS
PLET FS PLOTS UP T@ 9 CURVES SIMULTANEBUSLY
PLOTTO B SIMULTANEGUSLY PLOTS 1| T@ & FUNCTIZNS
PLOTS Fs PLGTS UP T@ 9 CURVES SIMULTANEBUSLY
PGLPLO FP PLBTS EQNS IN POLAR COORDINATES
SPHERE SOLVES ANY SPHERICAL TRIANGLE

B
TRIANG 8 SBLVES FE@R ALL PARTS GF ANY TRIAMNGLE
TWIPLG B SIMULTANEGUSLY PLETS 2 FUNCTIONS
XYPLGT B PLBTS SINGLE-VALUED FUNCTIONS

e 80K ook ok ok
EEERkED- -~ EDUCATION AND TUTEGR LAL fok dofeod ko b fok ¥ o o e ol e oo e o o e

DRIVES FHP DRIVER FOR EXPER. A COMPUTER ASSISTED INST. LANG.
EXPERN E EXPER TUTORIALS IN EXPER (N=1 T@ S) [PREPRSIDRIVES]
PREPRS FHP PREPROBCESSAR FOR EXPERs, A COMPUTER ASSISTED INST. LANG.
"

ok kR kR R kR EEDE e DEMBNSTRAT I QN ok o g o e deofod o oo e o o 90 deole o o e s e e o o o ot e oe

AMAZE B CONSTRUCTS MAZES - EACH UNIQUE

BLKJAK B THE COMPUTER DEALS BLACKJACK

MABNER B SIMULATES A LUNAR LANDING(M@ONERI:MOONERS)

MBGNER1 DATA FILE F@GR FOR MOGNER

MBONERR INSTRUCTI@BNS FILE FOR MOGONER

PBGPING B PRPULATION PROJECTIONS FOBR AN AREA

PRIME B PRIME FACTORIZATION OF A NUMBER

XMAS 8 A HOLIDAY SING-AL@NG», CHRISTMAS CARD AND GREETINGS

Rgkpkkkk ke Rk ko R kYUMo~ UTILITY AND MISCELLANE®GUS dokdod v ok e b o ok s e oo ol oo o o

ADATER FP-S A CALENDER DATING ROUTINE

ACCESS GS GMAP SUBROUTINE TO USE T/S ACCESS SYSTEM (APPLIB
APARAM GS GMAP SUBROBUTINE TO DETERMINE T/5 @R BATCH MUODE (APPLIB
APPLIB GL USERS LIBRARY OF F@RTRAN CALLABLE GMAP ROUTINES(APPLIB=R
ASCBCD GS GMAP SUBRBUTINE TO CONVERT ASCII T@ BCD (APPLIB
BCDASC GS GMAP SUBROUTINE TO CONVERT BCD T@ ASCII CAPPLIB
CALLSS GS GMAP SUBROUTINE TO CALL A T/5 SUBSYSTEM (APPLIB
CATALGG E CATALOG BF SERIES 60007600 T/S LIBRARY (THIS FILEY
CONVRT B CONVERTS MEASUREMENTS FROM ONE SCALE T@ ANOTHER

DBLS@RT FS SURT TW@ ARRAYS

DCS FS FBRTRAN SUBR. TO TRANSFER CHARACTERS FROM STRING T@ STRI
DEFIL GS GMAP SUBRBUTINE TG CREATE TEMP@RARY FILES CAPPLIB
DESE® FP STRIPS LINE SEQUENCE NUMBERS FROM A FILE

GMAp Fp FARTRAN=-=AN INTERFACE T8 GMAP ASSEMBLER (GMAP-SOR)

KIN GS GMAP SUBR.T® READ LAST LINE FROM TERM. IN BUFF. C(APPLIB
REFORM FpP REF@RMATS A °NFG@RM' FORTRAN SOURCE FILE T@ °FORM®

RLINE FS READS LINE, OPTIONALLY STRIPS LINE # & COUNTS ENTRIES
SGLSORT FS S@GRT AN ARRAY

TLUL Fs TABLE SEARCH

TPLS@RT FS S@RT THREE ARRAYS

UATOLA GS GMAP SUBR. TO CHANGE CASE 0OF ASCII CHAR. STRING CAPPLIB

5/73 xii DA45A.

SRR R Rk R Rk k kBF = = BUSINESS AND FINANCE ®% ook dodokod bk dokodbodod b ok bk kbl

ACGCRULT
ANNUIT
BAL ANCE
BlL.DGCBST
BANDATA
BENDPR
BONDSW
BRNDYD
CASHFLOW
DEPREC
INSTLE
INTRSTZ
INVANL
LESSEE
LESSIM
LESSER
MAKE-BUY
MGS 1M
MESIM- 1IN
MEBRTCST
M@RTGAGE
NEM- EFF
RETURN
RISKIT
SALDATA
SAVING
SIMFUND
SIMPLBT
SMLBUS
TRUXNT
WAL STK

MDD TMODODUowTLOoTooDwe

R

]

ToDDUoDLUoDwomE

COMPUTES AND PRINTS ACCRUED INTEREST ON INSTALLMENT LOGAN
ITIES,LOANS»MORTGAGES

RAM TGO RECUNCILE A BANK STATEMENT BALANCE

ANALYZE BUILDING C@STS

ANALYSIS @F A BOND INVESTMENT PO@RTFOLIO

COMPUTES PRICE AND ACCRUED INTEREST @F A BOND
CALCULATES THE EFFECT OF A BOND SWITCH

COMPUTES BGND YIELDS

PREDICTS NEXT YEARS CASH FLOW

CALCULATES DEPRECIATION BY FOUR METHBDS

CALCULATES MONTHLY PAYMENT SCHEDULE @N INSTALLMENT LOAGR
INTEREST RATES REGARDLESS OF PAYMENT STREAM --REGULATION
RETURN 8N INVESTMENT ANALYSIS

COMPARES A LEASE WITH PURCHASE OF EQUIPMENT

SIMULATES LESSOR'S CASH FLOW AND RATE @F RETURN
CALCULATES THE LESSBRS CASH FLOW & RATE OF RETURN

TG MAKE @R T2 BUY DECISIONS

SIMULATES COMPETITIVE INTERACTION OF CUMPANIES

BN LINE INSTRUCTIONS FOR MGSIM

MORTGAGE SCHEDU FOR VARIGUS TERMS

CALCULATES A TGAGE REPAYMENT SCHEDULE

COMPUTES MULTIPLE EFFECTIVE ANNUAL RATES OF INTEREST
CEMPUTES ANNUAL RETURNS FOR A SECURITY FROM ANNUAL DATA
RISK ANALYSIS BASED ON HERTZ®S SIMULATION MUODEL
COMPUTES PROFITABILITY @F DEPARTMENTS QF A FIRM

SAVINGS PLAN CALCULATIONS

SIMULATES LONG~RUN PERFORMANCE BF FUNDS(SIMPLOT?
PLOTTING PROGRAM FOR SIMFUND HISTOGRAMS

PAYMENT SCHEDULES FOR A SMALL BUSINESS ADMST. LOAN
INTEREST RATE CALCULATIG@NS

CALCULATES INTRINSIC VALUE @F STOCK--MUOLODOVSKY METHGOD

wREEND BF CATALG G &%

5773

xiii

DA4BA

CPM

This FORTRAN program computes the earliest (ES) and latest (LS) permissible start
times, earliest (EF) and latest(LF') finish times, total float (TF), and free float (FF) for the
activities of a project network model, The program also determines the critical path through

the network and, at the user's option, calculates direct cost, percent completion, and calendar

dates.
RESTRICTIONS
1, The nodes (events) of the arrow diagram can be numbered randomly with
any number from 0 to 4095,
2., Each activity must have a nonnegative duration expressed in whole days,

3. The maximum problem size is limited by:
2% (highest numbered node) + (# activities) + 2 = MX
and, if calendar dating is desired:
(project duration) + 2% (highest numbered node) + 3 = MX,
where MX is currently set to 3000, MX can be reset by changing the parameter
statement near the beginning of the program,

NOTE: The head of the job arrow (J) does not have to be numbered
larger than the tail (I), There can be more than one arrow
with the same I and J, and the activities can be input in any
order,

DATA FILE FORMAT

The data should be entered in a file before executing the program, either with or
without line numbers, Three types of information must be entered in the data file: data

file format information, activity data and, if desired, calendar dating information,
The first line in the file contains alphanumeric problem identification., If the first
character of this line is numeric, the program assumes the data file was built with line

numbers,

The second line gives the format of the activity data and is in the following format:

(line #) CcoST {PRCNT {Il\)TgSE(;l;R} linesize, media
ine # . inesize, medi
NCOST j NPRCNT LDESCR

5773 MS-11 DA4S5A

CPM-2

The entries on this line have the following meanings,

COST Activity cost is included and is to be processed.

NCOST Activity cost is not included or is included but neither cost nor
percent are to be processed,

PRCNT Activity percent completed is included and is to be processed,
NPRCNT Activity percent completed is not to be processed,
DESCR Alphanumeric activity identification is on the same line as the

rest of the activity data and is to be processed, The identification
must begin with a nonnumeric character.

NDESCR Alphanumeric activity identification is not to be processed but can
still be included on the same line as the rest of the activity data.

LDESCR Alphanumeric activity identification is on the line following the
rest of the activity data and is to be processed, The identification
must begin with a nonnumeric character,

linesize The number of character positions per line on the output device,
media The media code to use in writing the network report data includes:
media = 3 BCD print line
media = 5 TS ASCIIL
media = 6 System standard ASCII

Beginning on the third line, the activity data is entered in free format as indicated below and

as described in the first two lines of the data file. Note that all nume ric values are entered

in integer mode only., The items in parentheses below are optional:

(line #) I J duration (cost) (percent) (identification)

(line #) 1 J duration (cost) (percent)

(line #) identification

If calendar dating is desired, the last line should have I = J = duration = cost =

percent = 0,

The program tests for errors and issues the following error messages:

I1-J errors — I or J greater than 4095, negative, or I = J,
Problem too big for allocated storage.

Multiple start or finish nodes.
A loop in the network, In this case, the activity identified is either on
the loop or on a sequence of jobs that pass through a node of the loop.

N R A A

For calendar dating, the first line following the activities is the starting date in the

following format. If the starting month number is negative, the calendar dating is ignored.

5/73

(line #) month #, day of month, day of week #

MS-12 DA45A

CPM-3
Following the starting date, the nonworking days of the week and the holidays are
entered for each year the project is expected to cover, This data is entered one item per line

in the following order:

(line #) last two digits of year

(line #) a nonworking day of week
etc,

(line #) -1 (end of nonworking days)

(line #) holiday month #, day
etc,

(line #) -1, -1 (end of holidays)

(line #) last two digits of next year
etc,

®
B

o

(line #) last holiday of last year

INSTRUCTIONS

If the data file was named 05 or has already been accessed under the alternate name 05,

the program can be executed by typing:

RUN LIBRARY/CPM, R=(CORE=23)}#05

If the data file has a name other than 05, for example, TPMDATA, the program can

be executed by typing:

RUN LIBRARY/CPM, R=(CORE=23#CPMDATA '"05"

If the activity data is to be written to a file rather than to a terminal, type the following

command line (depending upon particular core allocated):

RUN LIBRARY/CPM, R=(CORE=23}#05;06

The activity data will be written to file 06, Error messages and project summaries

will still be sent to the terminal,

This program can also be executed in the batch environment by submitting a job

similar to the following:

$ IDENT
$ OPTION FORTRAN

5/73 MS-13 DA45A

CPM-4

$ FORTY ASCII, LNO, NFORM, OPTZ

$ LIMITS , 32K

$ PRMFL S*%, READ, SEQ, LIBRARY /CPM
$ EXECUTE

$ LIMITS , 13K

$ PRMTL 05, READ, SEQ, userid/datafile
$ ENDJOB

SAMPLE PROBLEM

Figure 1 is an arrow diagram for a sample project, The problem is first solved without

calendar dating and then with calendar dating,

1998 12343

gi04d

_CLEAN UP

(LINE AVAILABLE ™ DEACTIVAYE
5 »(6
30) TN e o TN (6)

Figure 1. Sample Arrow Diagram for Renewal of Pipeline

5/73 MS-14 DA45A

CPM-5
SAMPLE SOLUTION 1 — WITHOUT CALENDAR DATING

#@LD 05
READY
*LIST

010 TEST CPM PROGRAM -— NO CALENDER DATING
020 CBST PRCNT DESCR 118 5
30 1 2 10 0 100

040 1 5 30 0 100 LINE AVAILABLE
050 2 3 2 25 100 MEASURE & SKETCH
060 2 3 1 300 100 ASSEMBLE CREWS
070 3 4 1 10 100 MATERIAL LIST
080 S 6 1 75 S0 DEACTIVATE LINE
0%0 4 6 2 100 45 ERECT SCAFF@LD
100 4 7 30 100 10 PRGCURE PIPE
110 4 8 45 150 15 PROCURE VALVES
120 6 8 0 0 O DuMMY

130 7 9 5 220 0 PREFAB SECTIUNS
140 9 10 6 120 0 PLACE NEW PIPE

150 10 11 2 150 O WELD PIPE
160 8 11 1 75 0 PLACE VALVES
170 11 12 1t 30 O FIT UP

180 11 13 4 80 O INSULATE

190 12 13 0 0 0 DUMMY

200 12 14 1 20 O PRESURE TEST
210 13 14 1 20 0 REM@VE SCAFF@LD
220 14 15 1 20 0 CLEAN UP

READY

*RUN LIBRARY/CPM,R=(CURE=233#05

wgke O P M owkk

10 TEST CPM PRIGRAM WITH CALENDER DATING

END 8F DATA AFTER 21 ACTIVITIES (IsJ= 14 151
i J DUR COST % ES EF LS LF T FE
L i 2 i0 0 100 0 10 0 10 0 O
i 5 30 0 100 o 30 27 57 27 0 LINE AVAILABE
* 2 3 2 25 100 10 12 10 12 0 0 MEASURE & SK@#
2 3 i 300 100 10 it it ie 1 1 ASSEMBLE CRE®
* 3 4 i 10 100 2 i3 12 13 0 0 MATERIAL LIST
B 6 i 5 50 30 31 57 58 27 0 DEACTIVATE L&
4 6 2 100 45 i3 15 56 58 43 16 ERECT SCAFFGQ
4 7 30 100 10 13 43 i6 A6 3 0 PROCURE PIPE
* 4 1) 43 150 195 13 58 13 58 0 0 PR@GCURE VALVE
6] s 0 O 31 31 58 58 27 27 DuMmy
1 9 S 220 0 a3 48 46 51 3 0 PREFAB SECTIS®
9 10 [120 0 48 5S4 St 57 3 0 PLACE NEW PIE
10 il 2 150 0 54 56 57 59 3 3 WELD PIPE
* 8 il i 75 g 58 29 58 59 o] 0 PLACE VALVES
i i2 i 30 0 59 60 62 63 3 0O FIT upP
* 11 13 4 80 0 59 63 59 63 0 0 INSULATE
i2 13 0 0 0 60 60 63 63 3 3 DUMMY
12 La i 20 Q 60 61 63 64 3 3 PRESURE TEST
* 13 ta i 20 0 63 &4 63 64 0 0 REMBVE SCAFF@
* 14 1S i 20 O 64 65 64 63 0 0 CLEAN UP

T@TAL PRGJECT COST = 1495
65 WORKING DAYS REQUIRED TO COUMPLETE PROJECT
38% GF TOTAL PROJECT COMPLETED

30% @F CRITICAL PATH ACTIVITIES CUMPLETED

5/73 MS-15 DA45A

CPM-6

SAMPLE SOLUTION 2 — WITH CALENDAR DATING

*0L.D 05
READY
»LIST

010 TEST CPM PROGRAM WITH CALENDER DATING
020 C@ST PRCNT DESCR 118 5
30 1 2 10 0 100

040 1 5 30 0 100 LINE AVAILABLE
050 2 3 2 25 100 MEASURE & SKETCH
060 2 3 1 300 100 ASSEMBLE CREWS
070 3 4 1 10 100 MATERIAL LIST
08B0 5 6 1 75 50 DEACTIVATE LINE
090 4 6 2 100 45 ERECT SCAFF@LD
106 4 7 30 100 10 PREBCURE PIPE
110 4 8 45 150 15 PROCURE VALVES
120 6 8 0 0 0 DuMMYy

130 7 9 S 220 0 PREFAB SECTIONS
140 9 10 6 120 O PLACE NEW PIPE

150 10 11 2 150 O WELD PIPE
160 8 11 1 75 0 PLACE VALVES

170 11 12 1 30 0 FIT uP

180 11 13 4 BO 0 INSULATE

190 12 13 0 0O O DuMMY

200 12 14 1 20 0 PRESURE TEST

210 13 14 | 20 0 REMAVE SCAFFOLD

220 14 15 1 20 0 CLEAN UP

230 0 0 0 0 O END @F ACTIVITY DATA

240 12 29 2 STARTING M@NTHs DAY, DAY OF WEEK
250 69 STARTING YEAR: WORK SCHEDULE FOLLBWS
260 1 IS A NON-WBRK~DAY 8F WEEK

270 7 DITT®

280 -1 END OF NON-WORK-DAYS

290 12 25 CHRISTMAS IS A HOLIDAY

300 -1 -1 END OF MOLIDAYS FAR THIS YEAR
310 70 NEXT YEAR

320 1 IS A NON-WIRK-DAY

330 7 DITTO

340 ~1 END @F NAN-WERK=DAYS

350 1 1 NEW YEARS 15 A HOLIDAY

360 2 12 LINCOLN'S BIRTHDAY

370 3 27 GA3D FRIDAY

READY

#RUN LIBRARY/CPM,R=(CIRE=23»#05

vk C P M wwk

i0 TEST CPM PRGGRAM WiTH CALENDER DATING

J DUR C@sT % ES EF LS
* 1 2 10 0 100 12729769 1713770 12/29/69
1 5 30 0 100 12729769 2710770 2/ 5770
Y 2 3 2 25 100 1713770 1718770 1713770
2 3 1 300 100 1/1377C 1/14770 1/14/770
* 3 4 i 10 100 1715770 1¥16770 1715770
5 6 i 75 50 2710470 2711770 3720770
4 6 2 100 45 17167470 1720770 3719770
4 7 30 100 10 V16770 37 2770 1721770
* 4 ' as §50 1S5 1716770 3/23770 1/16/70
6 8 0 0 0 2711770 2711/70 3/23770
7 9 5 220 0 3/ 2770 37 9770 3/ 5770
9 10 6 120 0 37 9770 3217770 3712770
1o 1t 2 150 0 3717770 3719770 3720470
- 8 11 1 75 0 3723770 3424770 3423770
il 12 1 30 0 3/24770 3/25/70 3/30/770
* i i3 4 80 O 3724770 3731770 3/24/70
12 13 0 Q 0 3725770 3425770 37317170
12 14 1 20 0 3725770 3/26770 3/31/770
* 13 P4 1 20 O 3/317706 4 /70 3731770
® 14 15 1 20 0O 4/ 1770 4/ 2770 4/ 1/70
TOTAL PRAJECT C@ST = 1495

65 WERKING DAYS REQUIRED T@ COMPLETE PREJECT
PRGJECT START DATE 12/29/69
PREJECT COMPLETION DATE 4/ 2/70
38% OF TOTAL PROJECT COMPLETED

30% OF CRITICAL PATH ACTIVITIES COMPLETED

LF

17137170
37207170
1£15770
1715770
1716770
37237710
3723770
3/ 5770
37237170
37237710
3712710
3720770
3724770
3724770
3731770
37317170
3731770
4/ 1770
4/ 1770
as 2770

5/73 MS-16

TF

27

27

N -3
- 3w W

COWWOWoWwwWwW

FF

COoOWWLOODOLISO VWSO =000

DA45A

CPMLOOP

This FORTRAN program identifies multiple loops in a CPM-type network, It also
isolates other nonlooping elements, such as parallel legs (alternate paths in a loop) and

interconnecting strings,

METHOD

This program uses the algorithm described by J. A, Chance, !

INSTRUCTIONS
Enter the network description in a data file according to the following rules:

1. The first line contains any alphanumeric problem identification. The
routine prints this line on the output report, It also determines whether
the file contains preceding line numbers based on the first character of
this line (i, e,, if the first character of the first line of the data file is
numeric, it is assumed the entire file was built with line numbers},

2. The second line informs the program if an alphanumeric activity descrip-
tion has been entered on the line following each activity description, If
this line contains an 'L'in any position, it is assumed the data file has
been built using two lines for each activity. If it does not contain an 'L/,
each activity description is contained on only one line.

3. The following lines contain the activity descriptions in the order
(line #) from node, to node (description)
or, if the second line contains an 'L/',
(line #) from node, to node (description)
(line #) description

4, Optionally, the end of data can be flagged by an activity for which

from node = to node = 0

NOTE: The data file format for the program CPM is compatible with the data
file requirements for this program,
The routine may fail to detect all of the loops in a network by incorrectly classifying
some as parallel legs, A second pass is made through the network to attempt to identify
any loops that might have been missed on the first pass, However, some parallel legs

and interconnecting strings may then be lost,

1Cl}mnce, J. A., "Multiple Loop Detection in Network Models,' General Electric Technical
Information Series, Publication No, R64CD1, 1964,

5/73 MS-16,1 ‘ DA45A

CPMILOOP-2
RESTRICTIONS

The size of network that can be analyzed varies, depending on the complexity and the

size of the loops, Most problems can be solved if:
(MAX, NODE #) + (MAX, # OF ACTIVITIES) *3 <« MAXTAB

where MAXTARB is set in a parameter statement at line 40 of the program, Currently MAXTAB
is set to 1000, If the program requires a larger setting of MAXTAB, an error message will

be printed.

Also the node numbers must satisfy

0 < node # < 16384

SAMPLE PROBLEM

Isolate the loops in the following network.

SAMPLE SOLUTION

*NEW

READY

*Q10 TEST DATA FOR CPMLOQP
*#020 NC@ST NPRCNT NDESCR 72 S
*030 0 1

*Q4 S

*050 0 12

%060 1 2

*«07Q 1 3

*080 1 4

5/73 MS-16,2 DA45A

CPMLOOP-3

w170 8 11
®180 9 8§
190 9 10
2200 11 13
210 12 §

#220 13 10

*230 13 12

*SAVE L@@PDATA_

DATA SAVED--LOG@PDATA

*L1B CPMLOOP

READY

HRUN

ENTER NAME @F DATA FILE
=L, @APDATA

010 TEST DATA F@R CPMLG@P

SIMPLE LOOP(S)

7 9 8 7 9 8
[4 4 i
5 8 8 i i1 13 12 5 13 12

5/73 MS-16,3 DA45A

o

o

GASPIIA (GASPSAMP, GASPDAT A}

The file GASPIIA contains a set of FORTRAN subroutines that provide the programmer
with a FORTRAN-based simulation language that simulates event-oriented systems.,

GASPSAMP and GASPDATA are sample problem files,

METHOD

GASPIIA provides routines for event control, statistical collection and computation,
report generation, and random number generation, The user must supply the main program,

the event routines, and an optional output routine,

NOTE: GASPIIA calls a uniform random number generator in the form:

Y = UNIFM1(X). The library programs FLAT, URAN, or UNIFM
can be used,
INSTRUCTIONS

Log onto time sharing under the FORTRAN subsystem, andwrite a main program and

subprograms as needed for the system to be simulated, Then give the command:
RUN#; GASPIIA; FLAT

The program will type:
NAME OF INPUT FILE

Respond with the name of a previously prepared input file,

Input performed by the GASPIIA subroutines will be from this file, If blanks are
entered for a file name, the file is the terminal device, The input file is in free-field format
except for the first line, which is formatted as described in SIMULATION WITH GASPII
(see References), The input file should not have line numbers, The GASP storage map may

be listed.

REFERENCES

Pritsker, Alan A,, Kiviat, Phillip J., Simulation with GASPII, Englewood Cliffs, New Jersey,
Prentice Hall, 1969,

SAMPLE PROBLEM

Sample problem 5 from SIMULATION WITH GASPII has been programmed. The user-supplied
coding is stored in the file GASPSAMP, Problem data is stored in the file GASPDATA,

5/73 MS5-23 DA45A

GASPIIA -2

SAMPLE SOLUTION

The execution of GASPIIA is demonstrated by running the sample program with GASPSAMP
and GASPDATA, The GASPDATA file is also listed,

*LIST GASPDATA

PRITSKER A 504151968 1
322 4201 422 4

20 20

1232

LI S S |

e4 00 100 1.

25 00 100 1.

eSS 0.0 100 1.

0 1 00 0.0 400+ 567

-1 0
11
0«1 0«0 0«1 0.0
12
1.0 00 0.C 0.0
1 3
1.0 0«0 0.0 0.0
20
0.0 0 0O
2 0
0.0 0 00
20
0000
1 4
300 0 O O
00
READY

*QLD GASPSAMP

READY

*RUN *; GASPIIAZFLAT
NAME OF INPUT FILES?
= GASPDATA

SIMULATION PROJECT NO. S BY PRITSKER A

DATE 4/ 15/ 1968 RUN NUMBER |

PARAMETER N@. 1 04000 0 100000 L+«0000
PARAMETER NO. 2 02500 0. 100000 1.0000
PARAMETER N@. 3 0.5000 0. 10.0000 10000

D8 YOU WANT T@ SEE A GASP J@B STORAGE DUMP?
03N@»s 1=2YES
=0

*e INTERMEDIATE RESULTS**

5/73 MS-24 DA454

#kGASP SUMMARY REPORT*w%

SIMULATION PROJECT NO. 5 PRITSKER A
DATE 4/ 15/ 1968 RUN NUMBER 1
PARAMETER N@. 1 0« 4000 O
PARAMETER N@. 2 062500 Oe
PARAMETER NO. 3 0.5000 Oe
e
GENERATED DATA%%
CODE MEAN SeDEV MIN MAXa
1 3.2337 15581 02531 7.8550
2 065693 0.5704 0.0035 3.4906
«wTIME GENERATED DATA%*
C@DE MEAN STDeDEV. MINe MAXo
1 506803 2.0974 Oe 8. 0000
2 0.4330 04955 0o 1.0000
3 0.9108 0.2850 0. 10000
4 47.0627 49.9136 O 100.0000
#% GENERATED FREQUENCY DISTRIBUTI@NS*%
C@DE HISTOGRAMS
1 10 18 32 St 74 80 73 53 32 32
22 14 12 71 2 0o 0 0 0 ©0
2 0 140 111 72 48 41 35 18 21 13
6 S5 & 3 2 o 1 2

FILE PRINTGUT, FILE N@. |
AVERAGE
3TD. DEV
MAXIMUM

NUMBER IN FILE WAS.

Fll.E CONTENTS

NSET

THE FILE IS EMPTY

FILE PRINTOUT, FILE N2. 2

AVERAGE NUMBER IN FILE WAS.

$STDRs DEV
MAXIMUM

5/73

23528
05758

4

22755
104822

MS-25

100000
100000
100000

@BS.

532
532

TATAL TIME

302.8572
302.8572
302.8572
302.8572

1«0000
100060
10000

GASPIIA-3

DA45A

GASPIIA -4

FILE CONTENTS

NSET

THE FILE IS EMPTY

FILE PRINTOUT, FILE N@G. 3

AVERAGE NUMBER IN FILE WAS.» 15625
STDe DEV 07314

MAXIMUM 2

FILE CONTENTS
NSET

THE FILE IS EMPTY

FILE PRINTQUT, FILE NG. 4

AVERAGE NUMBER IN FILE WAS, 0.4706
STDe DEV 00,4991
MAXIMUM !

FILE CONTENTS

NSET

THE FILE IS EMPTY

MEAN TIME BETWEEN ARRIVALS =0.40

MEAN SERVICE TIME FOR STATION 1 =0.25
MEAN SERVICE TIME FOR STATION 2 =0.50
PERCENT @F ITEMS SUBCONTRACTED = 27.21
NUMBER OF ITEMS SUBCONTRACTED = 197.
TOTAL ITEMS = 724,

MS-26

DA45A

INTOI

This FORTRAN program solves the zero-one integer programming problem using a

modification of Balas' method of implicit enumeration,

INSTRUCTIONS

To use this program, formulate the problem to be solved according to the following

standard:
Minimize
n
a (X,
oi i
i=1
subject to
n
a.o 2 Z a.,i Xi j=l, vee, m
) i-1 Y
andxi:Oorl, i=1, sse, N

Hence, n is the number of variables and m is the number of constraints, If m is greater

than 11 or n is greater than 28, the dimensions in the program must be increased.

All of the coefficients, aij’ should be integer. Establish a data file with line numbers

in the following format:

line #, m,n
line #, 0, a

line #, a_ _,a

line #

o e ey

a , a , a
mo ml mn

Note that a for i = I to m are the right-hand side constants. The first entry after
the line number on the second line is ignored by this program. It is included to maintain

consistency with the data file format used by the INTLP program,

The algorithm asks for a maximum number of iterations to be performed. If the
optimum is not found and confirmed within the limit given, data is written on a temporary

file 20, The user can then give a new limit on the number of iterations or can stop the

5/73 MS-39 DA45A

INTO1-2

program by giving 0 as the new limit, If the file 20 is saved, the user can continue the prob-

lem at a later time, at the point where he left off.

On execution, the program asks if the problem is a new or a restart using data on the
file START. It also requests the name of the original data file. If the problem is a new one,
the user can specify some variables to be set to one., The algorithm will never consider
the cases with those variables set to 0 (see Note 2). If no variables are to be set to 1,

enter O for the first index,

The program prints out the first feasible answer found and all subsequent feasible

answers whose objective value is better than the last feasible answer,

NOTES: 1. Although the optimum answer is usually easily found, it then
requires many iterations to verify that it is optimum,

2. The option of setting variables to one may reduce the number
of iterations needed to find the optimum; however, this optimum
may not be the optimum to the original problem,

REFERENCES

Zionts, Stanley, Implicit Enumeration Using Bonds on Variables: A Generalization of
Balas' Additive Alogrithm for Solving Linear Programs With Zero-One Variables, pre-
sented at the Operational Research Society of India Annual Meeting, Calcutta, India,
November 1968,

SAMPLE PROBLEM

Solve the problem, with four constraints and 20 variables, which has as the coefficient

vector of the objective function to be minimized
(35 2! 5’ 8)6, 91 1]"4!576’ 11,2’8’ 5’8’7, 3’9’ 2’4)

The coefficient matrix of the constraints:

-6 5 -8 -30 -1 -3 -8 -9 3=86 -3 -8 -6 176 -2 3 =T
-1'3 3 41 0 4 -1 60 80 1 -5 -4-1-9 -7 2 2
36 1 -3-5 6 -9 6 3-9 -6-3 -6 -6 6 2 -7 -8 0 -7
14 2 -11 1 1 -7 -8-9 -8-7 -9 1 101 92 1 -3

and the right hand sides of the constraints

(-25, -13, -15, -13)

5/73 MS-40 DA45A

SAMPLE SOLUTION

INTO1-3

The data was stored in the file INOIIN, The program ran with a maximum of 100

iterations, and then stopped. The restart capability was illustrated by running the pro-

gram again with a maximum of 500 iterations.

the maximum was increased to 900 iterations.

given the option of saving the temporary file 20,

s RUN

INTOH

O=NEW PROBLEM, 1=RESTART 0N LD PROBLEM
= 0

NAME OF THE DATA FILE

= INOTIN
MAX # OF ITER BEFORE DECISION POINT

= 100

INDICES OF VARIABLES T@ BE SET 1, ¢VE AT A TIME
(0 STBPS SCAN)

= 0

ok FEASTBLE POINTHR*
ALL VARIABLES ARE O EXCEPT:

X 9¥=1
X 13)=1
X<e 14ay=i
X 18)=1}
X 20¥=1
7= 31 ITER= 5

*okk FEASTIBLE PO INTHokx
ALL VARIABLES ARE 0 EXCEPT:

X< 1y=1
X{ 93¥=1
X 13)r=1
KO 14ay=1
KO 17y=1
X 20¥=1
Z= 28 ITER= 13

kA FEASIBLE PO INT#io0k

ALL VARIABLES ARE 0 EXCEPT:

x(5yl

X4 Br=1

X 9y=1

Xe tay=1i

XC 17y=1

XC 20)=1

Zw 27 ITER= 83

AT ITER 100 RESTART FILE BUILT
WHAT IS NEW ITMAX (0=5TeFP)

=0

PRAGRAM STAP AT 700

* RUN

INTOL

0=NEW PROBLEM, 1=RESTART @N OLD PROBLEM
= 1

NAME @F THE DATA FILE

= INOLIN

500

5/73 MS-41

No new feasible solutions were found, so

Notice that when signing off, the user is

DA45A

INTO1l-4

BEST SBLUTIGN FOUND PREVIGUSLY

ALL VARIABLES ARE 0 EXCEPT:

XC S)mi

XC 8)=i

X¢ 9et

X(14)=1]

XC 17)y=1

X¢ 203=1

Z= 27 1TER= 100

AT ITER 500 RESTART FILE BUILT
WHAT IS NEW ITMAX (O=ST@P)
= 900

= axQ P TIMUMS R %

ALL VARIABLES ARE 0 EXCEPT:
X¢ 5Sy=1
X¢ 8)=t
X¢ 9y=1
XC¢ 14)=1
XC 1T=1

X(20)=1
Z= 27 ITER= 890

% BYE
! TEMPORARY FILES CREATED.
20 ?

The data was saved in the file INO1IN and is listed below:

#LTST INOIIN

010 4,20

020 0, 302558856595 115455, 651152585558, 75359500 4

030 =25, -6 5:‘30“3) 0:“];"’3)"“:'9» 31&"“’63“'33"’“»"‘65 Ts F’h"oﬂ Hp =7
040 "13: ‘193,31‘4111004"")"6301R101"”5»‘4:“’11"“93“75’3#9

050 =15, 3565 153,55 659, 6, 3)*99‘61:'3’"6:".6' 65 PpmTogwboy Op=
060 ~13, 104525 =310 1o damTo =R =9 =By eTpmQp 1 t50NplpPsis=n

READY

Ao

5/73 MS-42 DA45A

INTLP

This FORTRAN program 1 = s Gomory's method to solve both the pure-integer and
mixed-integer programming pro. .ems, The user can actively interface with the program by
changing the method of picking the new constraints and by being able to add certain informa -

tion to the problem in an effort to speed up convergence,

INSTRUCTIONS

To use this program, formulate the problem to be solved according to the following

standard:

Minimize

subject to

n
a. z Z a.. X, , j=l, 0., m
jo Jjii

i=1

Hence n is the number of variables and m is the number of constraints. All of the

coefficients aij should be integer.

Establish a data file with line numbers in the following format:

line # , m, n

line#, a , a .y eao, a
ol

(e]e] on

line # , a , a s eee 5 A
mo ml mn

On executing the program, the user is asked to supply the method to be used: the
changes, if any, to be made to the data; and when to print out the iteration log., Every five
times the log is printed out, the user can decide if he wants to stop, or continue the solution,
or restart the problem from the beginning., If he chooses to continue, he can change the
printing of the iteration log and the method to be used. The following items should be

supplied when requested by the program,

® The name of the data file
® LSTART — The iteration when the log should be first printed out
® LOFTEN — Howoften should the log be printed

5/73 MS-43 DA45A

INTLP-2

® LMUCH — How much of the log does the user wish to see

LMUCH = 1) Print the entire log
2) Do not print the values of the variables

® METHOD —The method to be used in choosing the new constraints
Methods 1 through 5 are for the pure integer case. Method 6 is the mixed case.

METHOD = 1 Generate the new constraint from the row with the greatest RHS
fractional part,

2 Generate the new constraint from the row with the smallest
average fractional part of the coefficients.

3 Generate the new constraint from the row with the smallest
ratio of the RHS fractional part and the average fractional part
of the coefficients

4 Use the Euclidian algorithm to generate the new constraint
frorn the linear combination of two rows that are likely to
produce a deep cut in the axis along which the objective
function decreases most slowly.

5 Use the rows cyclicly to generate the new constraints

6 This method is for the mixed case. Its selection causes
the program to ask for the number of variables constrained
to integer values and their indices., Care should be used with
this method to avoid changing the problem by specifying dif-
ferent variables to be integer at the various decision points,

® CHANGES — The number of changes to be made to the data before starting.
If there are changes to be made, the user will be asked

VARIABLE #, VALUE
for each change. The permissible responses are:

(a) A variable number (1 through N) and the value at which
it is fixed, This option eliminates the variable and its
column from any manipulation by the program.

(b) 0, X. This option appends the constraint: objective
value 2 X to the problem.

(¢} -1, X. This option appends the constraint: objective
value < X to the problem,
® NEXT — After printing the iteration log five times, the user is given the choice of
1) Stop

NEXT = 2) Continue
3) Begin the problem again
NOTE: If the objective function has not changed for several iterations, the program
may be looping indefinitely through the same points. If this occurs, another

method should be tried, Also, another method could be tried profitably
whenever the change in the objective function becomes small,

5/73 MS -44 DA45A

INTLP-3

RESTRICTIONS

The program currently cannot handle more than 14 variables and approximately 16 con-
straints. Also, Gomory's method is known to converge slowly, especially for large problems.
However, by wisely using the interface capabilities of this program, many problems can be

solved with reasonab le effort,

REFERENCES

Gomory, R.E., "An Algorithm for Integer Solutions to Linear Programs, " in Recent
Advances in Optimization Theory, Ed: Graves & Wolfe, McGraw-Hill, 1963.

Trauth & Woosley, Mesa, An Heuristic Integer Programming Technique, Sandia
Laboratories, Albuquerque, New Mexico.

SAMPLE PROBLEM

Minimize -'X3 —x4 ~x5

subject to:

180

v

20 x4+ 30 x, + x
Lo

1 + 2 x 42 x

3 1 5

5 > 303 : ‘ X <
150 > 30 x +ZOXZ+ZX3+\4+Zx

1 5
0 >-60 X Xy
0 = 75 %, + X,
> X,
I > X,

SAMPLE SOLUTION
The data was saved in the file INTIN and is listed below:

#LIST INTIN

010 & 5
020 0 0 0 =} -
030 180 20 30
040 150 30 20
050 0 =60 0 1
060 O 0 -7
070 1 10
080 1 0 1

"

SO = DR e e
SO 08

50
00
o0
READY

5/73 MS-45 DA45A

INTLP-4

In the following run, method 3 is applied to the original problem, and prints the entire

log every iteration Starting from iteration 40,

INTLP

1=PRINT INSTRUCTIONS, 0=DINT

20

DATA FILE NAME

=INTIN
LSTART»LOFTEN, LMUCH» METHOD» CHANGES
=40 1 1 3 0

ITERATION 40 3BJ= ~8.64583330E 01 DETERMe= 1.44E 03
X 2= 5.41666664E~01
REC 1d= 2.29166666E-01
X¢ 3)= }.37500000E 01}
XC 4= 4.06250000E 01
XC 5)= 3.20833335E 01

ITERATION 41 QBJ= -8.58305540E Ol DETERMe= 3.00E 03
xXC 2)= 6.63108B736E~-01
XC 1)= 4.93662443E-01
XC 3)= 2.96197464E 01
X{ 4)a 4.97331553E 01
XC 5)= 6+.47765177E 00

ITERATION 42 QBJ= -8.50000000E Ol DETERMe«= S.00E Ol
X< 2)= 1.00000000E 00
XC 1)Y= 5.00000000E-01
XKC 4= 5.350000000E 01
X¢ 3)= 3.00000000E 01

ITERATION 43 0BJ= -8.50000000E 01 DETERM.= 1.10E 02
XC 2= H.18181820E-01
KC 1)= 3.63636363E-01
XC 4= 6.13636365E 01
XC 5)= 1.81818181E 00
X€ 3)= 2.18181818E 01

ITERATION 44 @8J= -8.46491232E 0l DETERMe= S¢70E 01
XC 2= 3.50877192E~-01

XC 4= 2.63157895E 01

XC S5)= 5.83333335E 01

XC 3= O

Examining the results, it appears that x, might end up to be 1, and that the optimal
objective value might be -85, The problem is restarted with x5 constrained to be 1, and the
objective function constrained to be greater than or equal to -85, Again, method 3 is used

and the only heading of the log is to be printed every 20 iterations,

5/73 MS-46 DA45A

INTLP-5

NEXT

=3

LSTART, LOFTEN, LMUCH» METHBDs CHANGES
s20 20 2 3 2

VARIABLE #» VALUE

=0 -85

VARIABLE #, VALUE

=2 1

ITERATION 20 08J= -7.98113203E 01 DETERM.s 5.30E O1

gPTIMuM

ITERATION 28 9BJ= -7.60000000E 01 DETERM.=].00E 0O

X 4= 54
RO 1)= 1
X¢ 3= 22

We discover a feasible integer solution (1, 1,22, 54, 0) with an objective value of -76,
However, because of the constraint imposed on Xy it might not be optimal. We learn that
any solution must have an objective value between -76 and -85, The problem is restarted

using method 3 and including these two constraints on the objective value, Only the heading

of the log is printed every 15 iterations.,

NEXT

=3
LSTARTsLOFTENs LMUCHs METHODs CHANGES
=20 15 2 3 2

VARIABLE #, VALUE

2j -85

VARIABLE #,VALUE

z=] <74

ITERATION 20 @BJ= ~8.49455557E 01 DETERM.= 3.95E 03
ITERATION 35 0BJs3 -8.49164028E 01 DETERM.= 3.47E 03
ITERATIUN 50 0BJ= =-8,27192984E 01 DETERM.z= 5.70E 01
ITERATION 65 @BJ= ~7.80000000E 01 DETERMe= 1.00E 02

ETERAT LN 80 WiBJd= ~T.70000000E 01 DETERMs=z 9.00E 00

Good progress is made for 40 iterations, but then little change occurs, The iterations

continue using method 5, Only the heading of the log is printed every 15 iterations.

5/73 MS-47 DA45A

INTLP-6

NEXT

=2

LOFTEN, LMUCH,METHOD

=152 5

ITERATION 95 dBJ= ~-7sT70000000E 01 DETERM.= 1«70E O1
ITERATIGN 110 38Jd= =7.70000000E 01 DETERMss= i«90E O

ITERATION 125 0BJ= -7.70000000E 0! DETERMe= 5.80E Ol

OPTIMUM

ITERATION 138 JBJ= -7.60000000E 01 DETERM.= 1.00E 00

X{ 2)= 1
X 4)= 54
X(3)= 22
AKC)= |
NEXT

=1

%

Verification proves that the optimal solution is, in fact, the feasible solution found

earlier,

5/73 MS-48 DA45A

LAYOUT

This BASIC program aids in computing the cost improvement made possible through the

more efficient layout of a plant, office, warehouse, store, etc.

METHOD

The Vollman-Ruml layout program is based on matrices established by inputting data

defining:
® Plant configuration by department (logical divisions).,
® Weighted figures for flow exchanges among departments (face-to-face contacts
of personnel, order picking labor, material handling systems, including size
and nature of items handled, distance traveled, etc.),
® Cost weightings for each department based on above measures,
@ Starting layouts,

The program assumes the layout area can be described as rectangular, Also, "dummy'',
nonmovable departments can be utilized to make the area rectangular where required, kI\/Iore
than one starting solution can be specified, A department can be designated as fixed (not
movable), Such a fixed department is a washroom area with pipes and plumbing, Larger
problems can be solved by increasing the dimension (DIM) statements from their current

size of 40 departments,

SAMPLE PROBLEM
For detailed instructions, list the program:
#LIST 1-250
For sample data as described above, type:

FLIST 5000

SAMPLE RUN SOLUTION

SYSTEM 2BASIC

OLD @GR NEW-2LD LAYAUT
READY

«RUN

LAYOUT WiLlL HANDLE THREE LAYBUT HEURISTICS:
CRAFT (=1)» ANY IMPROGVEMENT (=2)» AND RANKED PREDUCT (=32,

5/73 MS-54, 1 DA4BA

LAYOUT-2

WHICH HEURISTIC 15 25, @R 3. e

STARTING SALUTION i

INITIAL LAYBUT:
1 2 3
4 5 6
THE AVERAGE COST @F THE CURRENT LAYGUT

FINAL LAYOUT
3 4 2
5 i 6
THE AVERAGE COST OF THE CURRENT LAYQUT

STARTING SOLUTION 2

@ WD W w e e - o 0s @ e w

INITIAL LAYBUT:
3 2 §
4 S 6
THE AVERAGE COST @F THE CURRENT LAYQUT

FINAL LAYOUT
3 2 6
4 ! S
THE AVERAGE C@ST @F THE CURRENT LAYOUT

READY

5/73

IS

IS

638375

4881.25

6053+ 75

5355

MS-54, 2

DA45A

LNPROG

This FORTRAN program computes the optimum solutions for linear programming problems,
Specifically, a linear objective function is maximized (or minimized), subject to a set of linear
constraints, Letting Xj refer to the structural variables, Si to slack variables, and Cj and Di
to the objective function coeificients of the structural and slack variables, the objective

function is expressed as:

n m
7= z C.X. + Z D, s,
J J 1 1

.

J=1 1
where
® n is the number of structural variables
® m is the number of constraints

Each constraint is of the form:

{or = or >) Bi

In

n
S oax
EN I
j=1
where

A.i, refers to the structural variable coefficients, and Bi refers to the requirements
J k

columns or right-hand side values,

The results of the LP solution consist of an optional iteration log, the basic variable
results, and the nonbasic variable results. The structural variables are identified by the
number ! through N. The slack variables associated with each constraint are identified by
the numbers 101 through 100+M. Variable identifications 999 and 200+(M+1) are added by
the program to handle the "greater than' constraints and do not normally appear in the basic

and nonbasic variable results,
The iteration log, which is selected at run time, consists of the iteration count, the
identifications of the variables entering and leaving the basis, and the current value of the

objective function,

The basic variable results consist of the variable identification, the objective function

coefficient, andtheanswer (value of the variable) for each variable in the final solution.

5/73 MS-61 DA45A

LNPROG-2

The nonbasic variable results consist of the variable identification, the objective function
coefficient, and the answer (reduced cost or shadow price) for each variable not in the final

solution.

Anunfeasible condition is indicated by a slack variable associated with an equal to'
constraint and/or the slack variable identified as 200+(M+1) appeafing in the basic variable
results at other than a zero value, This means that the problem contains two or more con-

straints that cannot be simultaneously satisfied.

The appearance of a negative identification for a structural variable in the nonbasic
results indicates that this variable is unbounded. None of the problem constraints restrict

this variable from entering the solution at an infinite value.

INSTRUCTIONS

At execution, the program asks for the data file name. It is assumed this file has been
built without line numbers. The first line of data is used for problem identification, The
second line contains m (the number of constraints), n (the number of structural variables)
and either MAX or MIN indicating whether the problem is a maximization or minimization
problem. The next line is the objective function coefficients, CJ_, The data for each con-

straint follows in the following order:

A A, . .. A < B D,
ij 2 in i 7

where " <" can be replaced by '">'" or "=" to indicate the sense of the constraint,

The data for additional problems may also be included sequentially in the same file,

RESTRICTIONS
m < 30
n < 50
where
® m is the number of constraints
® n is the number of structural variables

5/73 MS-62 DA4BA

LNPROG-3

SAMPLE PROBLEM

Maximize the function:
7 = -X =Y -Z + W

subject to the constraints:

“X -1Y +4Z - IW > 5

2Y -7 - W >4
X -3Y + 42 - 4W < 5
X -2Y <3

SAMPLE SOLUTION

The data for this problem was stored in the file LPDATA.,

#LIST LPDATA

TEST PROBLEM FOR LP

4 4 MAX
] @} =@ 1
) =} 4 -3 » § 0
0 &2 =1 =~§ » 4 0
1 ~3 4 -4 < 5 0
t 2 0 0O <« 3 0
READY
®RUN

DATA FILE NAME
= LPDATA
TEST PROBLEM FOR LP
4 ROWS X 4COLS
1=PRINT ITERATION LOG, 2aSUPPRESS
s 2
@8Js FUNCT. s =5,00000E+00

BAS VA @BJe CBEFF. RESULT

o =1.00000E«00 3+00000E+0Q0

3 ~1-00000E+00 2.00000E+00

103w Oe 6. 00000E*00

104« Oe 9 00000E+00
Mo BAS VAR 0Bude COEFF o RESULT
i =1 +00000E+00 1+ 42857E+00

4 1.00000E+00 1 42857E-01

101> 0o 4e285TIE-O}

102» Do Te 14286E-01

5/73

DA45A

g—3

SIMPLEX [

This BASIC program solves small linear programming problems by a simple version of

the SIMPLEX method, For similar programs, see LINPRO and LNPROG.

INSTRUCTIONS

Tor detailed instructions, list the program:

#LIST 1000-1710

Before using the program, arrange all constraints (linear restrictions on the problem

variables) as follows:

1. The '"less than or equal' inequalities
2o The strict equalities
3. The ''greater than or equal' inequalities

To use the program, starting on line 10000, enter the data in the following order:

i, Coefficients for each of the problem variables (activities). Include zeros
for variables not appearing in each restriction, starting with the first
restriction, and proceeding in order until all coefficients of all restrictions

have been entered in data statements,

2. Elements of the "B' vector (constants comprising the right side of all
restrictions) in the same order as the restrictions,

The coefficients of the (linear) objective function, in the same order as
the restrictions, including zeroes if needed.

Then type RUN,

REFERENCES

Reinfeld and Vogel, Mathematical Programming, Englewood Cliffs, New Jersey,

Prentice-Hall, Inc,, 1958,

SAMPLE PROBLEM

Maximize the function: Z = 4X, + 4X, + 3X;, while satisfying the following constraints:
S1X) +2X, +3X, =15

s
0Xy - 1X, + 1X3= 4

IA

ZKI + 1X7 - 15\’3? o)

1X; = 1X, 42X, 10

b]

5/73

LN L OX, H\/%S 8
()2\".l TN, 00Xy =4
OKI + 00X, 4 lxgsz&
0Xy 0Xy +1Xy23

MS-86,1

DA45A

SIMPLE X-2

Beginning on line 10000, enter the above constraints in the following order:

10000 DATA -1,2,3,0,-1,1,2,1,-1,1,-1,2
10001 DATA 1,0,0,0,1,0,0,0,1,0,0,1
10002 DATA 15,4,6,10, 8,4, 4, 3

10003 DATA 4,4,3

As the program runs, MAX is typed for the function, and the value 3 is typed for the
number of activities (variables), When the number of constraints is called for, 7,0, 1 is
typed: 7 is the number of <<= restrictions, zero is the number of = restrictions, and one is

the number of = = restrictions,

NOTE: The problem solution is:
Variable (activity) Xy =3.4

Variable (activity) Xy = 3,2

i

i

Variable (activity) X3 =4.0

SAMPLE SOLUTION

P

SYSTEM ?BASIC

@LD OR NEW-QLD SIMPLEX
READY

SRUN

LIST THIS PROGRAM=~-1000-1710 FOR INSTRUCTIONS#®¥%¥

READY

*10000 DATA ~1525350s~1s1s2210-1sl15-12
¥§10001 DATA 15,0000,05150005021205051
*10002 DATA 155456510585 45453

%* 10003 DATA 45453

*RUN

IS THIS A MAX OR A MIN PR@BLEM ?MAX

HOW MANY ACTIVITIES D@ES YOUR PROBLEM HAVE 23

MOW MANY C@NSTRAINTS IN YOUR PROBLEM (<=s=s>=) 27,0s1

D@ YOU WANT THE INITIAL TABLEAU PRINTED 2?NO

D@ YOU WANT THE INTERMEDIATE BASIC SOLUTIONS PRINTED ?YES
D@ YOU WANT THE FINAL TABLEAU PRINTED ?YES

STRUCTURAL ACTIVITIES P~ 3

SURPLUS ACTIVITIES 4 - 4
SLACK ACTIVITIES 5 - it
ARTIFICIAL ACTIVITIES 2 - 12

5/73 MS-86,2 DA4SA

SIMPLEX-3

PHASE 1 INITIATED

INITIAL BASIC SOLUTION

ACTIVITY VALUE

5 5
& 4
7 6
® 10
9 8
10 4
i1 4
i2 3

(Z= -3

BASIC SOLUTION AFTER ITERATIGN 1

ACTIVITY VALUE
3 3
) é
6 1
7 9
4
9 8
10 4
i i

(Z= 0

PHASE LI INITIATED AFTER 1 ITERATIGN

VLUBTE B [NLAIRBLD

INITIAL BASIC SOLUTI@N

ACTIVITY VAL UE

= ONV& NG
@S D= W

- s

(Z= 9)

BASIC FEASIBLE S@OLUTION AFTER ITERATION 2

ACTIVITY VALUE

4
3
Q
i
1
4
4
]

= s
B OO 36 o=

(L= 9)

5/13 ' MS-86, 3 DA45A

SIMP [LiL X -4

BASIC FEASIBLE SQLUTIGN AFTER ITERATION 3
ACTIVITY VALUE
) 4.333333
2 + 3333333
3 3
S 9.666667
6 1333333
9 3666667
10 3666667
11 i
(L= 27666667)
BAS1(FEASIBLE S@LUTIGN AFTER ITERATION 4
ACTIVITY VAL UE
] 4
2 2
3 4
Q i
S 3
6 <
9 4
10 2
(L= 36)
i BASIC FEASIBLE SGLUTION AFTER ITERATIOGN 5
ACTIVIETY VAL UE
4 Je 4
2 32
3 4
4 i
6 3.2
8 18
9 Bo b
10 o &

(Z=2 384
| THIS SOLUTION IS MAXIMAL.
| OPTIMAL DUAL S@LUTIGN

CONSTRAINT DUAL EVALUATE@R

2

ANV W=

8
0
o4
0
0
0
3
0

5/73 MS-86, 4 DA45A

SIMPLEX-5 |

GPT IMAL TABLEAU

o > @ O WD W W G W W e

X< 1) X{ 2 3 X 3 X< 4 X S)
4] 4] 4]])
o] t] 0 o]]
0 i 0 0]
i 0 O Q Ry
0 0 0 [¢] 02
0 0 Q O o4
0 Q 0 i 0
Q V] 1 0 o
B8.J FN ROWs
0 8] o] 4] 8
X« 6) xe 7 2 K 8) X 9) X< 10 >
0 ol i 0 0
1 o2 0 0 O
0 a2 g 4] 4]
] o d 0 0 0
[¢] ™o) 0 i 0
0 © 0@ 4] 8] H
4] 0 [¢] 0 4]
0 4] 0 0 0
@#B8J FN ROWs
4] 2o d Q Q Q0
K< [D] X< 12 3 B~VECTOR
« 4 4] 1.8
-2 0 Je2
=} 4] 3.2
i 4] 304
-1 Q dob
1 4] o8
1 w i 1
i 8] 4
@GBS FN ROwWe
3 4] 3B 4

READY

NOTE:

5/73

Only the final or optimal tableau was requested in this run,

initial can be printed if the user desires,

MS-86, 5

The beginning or
See requests at beginning of run,

DA45A

TCAST

This FORTRAN program provides solutions to a wide range of time-series fore-
casting problems. The program follows four fundamental steps to provide useful predictions:
1. Cyclic analysis of past data

2. Trend analysis of past data

3. An error analysis for comparing forecast with actual data
4. A synthesis of analyses to form a forecast
INSTRUCTIONS

Data Preparation

The data can be entered either from a data file or from the keyhoard, In either case the
format is identical, The data file format is described, The file may be given any name and
it can be built with or without line numbers, The first line of the file is alphanumeric title

information, The second line contains the following parameters, separated by commas:

VARIABLE NAME DESCRIPTION
L LEAD TIME

The number of time periods for which the
forecast is to be calculated and the fore-
casting parameters optimized. Lead time is
usually specified as the minimum length of
time desired to accurately forecast the future.

IH FORECAST HORIZON

The number of time periods for which the
forecast is to be projected, regardless of
lead time and accuracy,
16 I6 = 0 - all three types of smoothing to be
used by program.

16

i

1 - single smoothing to be used by program.
16 = 2 - double smoothing to be used by program.
16 = 3 - triple smoothing to be used by program.

Y -SMAILL Smallest ordinate for plot of forecast.

Y-LARGE Largest ordinate for plot of forecast,

5/73 MS-91 DA45A

TCAST-2

The historical data is entered next, This data consists of a raw data point and optional
base series point for each time period. A base is a time series of values which are used to
adjust (transform) both the raw data and the forecast, Typically, a base series may represent
human judgment, cyclic variations, results of a multiple regression correlation analysis, or
known phenomena, The base series is usually used to transform the raw data into a new
time series, which, in turn, is used for intermediate computations, The results are

retransformed by the base series to form a forecast,

The raw data and base series data points (if there is a base series) are entered on the
following lines, with one raw data point and one base series data point per line., Data points

are entered in [ree-field format.

The termination of both the raw data and base series data points is specified with a
final data point greater than or equal to 1E15, If there is no base series, then the first data

line must have a value for the first base series data point greater than or equal to 1E15,
The program can handle up to 310 raw data points and 450 base series data points.
The final line in the data file contains up to eight trial smoothing constants, ALPHA,

entered in free-field format. Additional ALPHA's may be specified during execution of the

program. These constants must be between 0 and 1. The larger the constant, the more

weight is given to the recent history in calculating the forecast.

Execute Instructions

To execute the program, type:
LIB TCAST
RUN
The program will ask for the names of an input and output file and an optional print-out

level indicator,

The input filename is the name of a previously prepared data file. If the data is to be
entered from the terminal, enter blanks for the file name. There are seven groups of output
data. For each group, there is the option of writing the output on the specified output file,

or printing it at the terminal. The print option parameters are:

5/73 MS-92 DA45A

TCAST-3

COMPLETE — Print all seven (7) groups.
ASK — Give the output option on all seven groups of output,
PART — Give the output option for only CYCLIC ERRORS, TREND

ANALYSIS, and FORECAST DATA, All other output is to
be written on the output file,

LEAST — Print CYCLIC ERRORS and TREND ANALYSIS at the terminal;
all other output is to be written on the output file,

If none of the above is entered, PART is assumed, The output file can be listed at

the terminal, printed at the central site (using BPRINT), or examined using EDIT,

Output Description

A description of the output follows:

L} INITIAL DATA
The raw data points, base series, etc,, as read from the data file., This
output is useful to ascertain that the data was correctly entered.

® CYCLIC ERRORS

The cyclic error ERR(K) is a relative measure of residual variance for
a cycle of length K.

The local minima of cyclic error indicate significant cyclic behavior
corresponding to that cycle length., This type of analysis is useful to
determine which cyclic intervals it would be meaningful to force, and
other harmonics.

The program prints the cycle length which minimizes the relative error,
The user then selects the period to be used,

o CYCLIC VALUES

The cyclic values give a quantitative description of the shz of the cycle.

@ CYCLIC RESIDUES

The residues remaining after the raw data is corrected for both base series,
and cycle series are output,

At this point the period can be changed and the cyclic values and cyclic
residues recalculated.

@ TREND ANALYSIS

The mean absolute deviations (MAD) which are associated with each smoothing
constant and type of smoothing are printed.

After the program has performed this analysis for each smoothing
constant in the data file, additional constants can be entered from the
terminal. A null response (carriage return) signifies there are no more
constants to be entered. Specify the smoothing type and smoothing
constant to be used for the forecast.

5/73 MS-93 DA45A

TCAST-4

e FORECAST

Specify the time period for which the forecast output is to begin (the
output cannot begin before time period = lead time + 5). For each
time period the output consists of:

- Forecast of the residue, which is the forecast of raw data
point minus base series data point minus cyclic value,

— Composite forecast, which equals forecast of the residue
plus base series data point plus cyclic value,

— Raw data point,

- Error in the forecast, which equals raw data point minus
composite forecast,

- A plot of the composite forecast (.) and raw data point ()
versus time for each time period. When the plot of the
composite forecast and the raw data point occur in the same
print position, an ''='" is printed.

After the end of the historical data, there are no errors. Beyond this point, only the
time period, forecast of the residue, and composite forecast are printed. These time periods

are of prime interest, since they constitute the forecast.

The forecast plot can be directed to the terminal, the main output file, or a distinct
plot file. If it is directed to the main output file, then each data line will be followed by the

plot line,

@ STATISTICAL INFORMATION

- Sl, S2, S3, the exponentially smoothed variable for single, double,
andtriple smoothing, respectively, followed by CEDI1, CED2, CED3,
the current expected demand for single, double, and triple smoothing,
respectively.

- C2, C3, the change per unit time in exponentially smoothed average
for double and triple smoothing, respectively, and finally RC3 the
rate of change per unit time in the exponentially smoothed average
for triple smoothing.

- The time period after which the forecast is not within the mean
absolute deviation (MAD) limits.,

— Linear least square curve fit.
— Mean,
— Variance,

NOTE: The user can give a null response to any question, in which
case the program chooses the best option or parameter.

5/73 MS-94 DA45A

REFERENCES

TCAST-5

Series G-200/400/600/6000 Time Series Forecasting Implementation Guide, Order No. BQO7.

SAMPLE PROBLEM

Perform a time series forecast on the following data with a lead time of 3 and a

horizon of 6.

data point

3.02

4

5,01 6 1 2 3,02 2 3 4

base point

3

33 0 0 O 1 1 1 3 3 3

SAMPLE SOLUTION

The data was entered from the terminal.

in a data file as below:

SAMPLE 1 — DATA FILE

3, 6, 0, 0., 10.
1
5
3
4, 3
6, 3
1, 0
2, 0
3, 0
2, 1
3, 1
4, 1
1E15, 3
) 3
3
1E15
1.2 .3

However, the data could have been entered

During execution, part of the data was directed to the output file DUMP. This file is

also listed,

5/73

MS-95 DA45A

TCAST -0

SYSTEM ?YF@R

OLD BR NEW-LIB TCAST

READY

*RUN

ENTER °2° FOR INSTRUCTIONS

FILES (PRINT QPTION)
=3 DUMP

ENTER PRUBLEM TITLE-
=SAMPLE PROBLEM ~ ENTERING DATA FROM TERMINAL

ENTER LEAD TIMEsHORIZON,SMOOBTHING TYPEs,YSMALL» YLARGE-
=35 650500, 10'

ENTER DATA.BASE POINTS(ONE PAIR/LINE)
2101

DIRECT CYCLIC ERRGR T@ FILEC(Y QR N)-
=N

CYCLIC ERRGR
K ERR(K)
0166615
0196793

Oe
0.301417
0337813
Qe

W O =

[N Sl 8

873 MS-96

DA45A

TCAST-7

PERIAD GF MBST DBMINANT CYCLE= 3

PERF@RM ANALYSIS F@R PERI1GD-
=3

DIRECT TREND ANALYSIS TO FILE~
2N

TREND ANALYSIS

ENTER ALPHAS(MAX @F 8

Zels sls 3

ALPHA TYP 5M ERRGR MAD

0. 10000 i 000995
010000 2 0.00882
010000 3 0.00801
020000 i 000929
020000 2 0.00752
0.20000 3 000689
030600 i 000862
0. 30000 2 000689
030000 3 0-00968
ADDITIGNAL ALPHAS-

o@D o4

025000 i 0.00894
025000 2 0.00693
025000 3 0-.00829
00 40000 1 000820
0. 40000 2 0-00895
0. 40000 3 001225

ADDITIZNAL ALPHAS~

ko

GPTIMUM SMOBTHING TYPEs3 ALPHA=0.20000000

WHAT SME@@THING TYPE AND ALPHA~-
235 o2

DIRECT F@RECAST PLBT TG TERMINAL,QUTPUT FILE. BR PL@T FILE (T,8,P2
=T

FORECAST PLOT

BEGIN FORECAST AT PERIGD-
=0

5/73 MS-97 DA4BA

TCAST-8

TIME O«

8 =
9

10 =
i1 =

i2 =

13 o

14 .

15 .
16 o

17 .

18 e

CAUTI@ON, FORECAST NOT WITHIN MAD LIMITS AFTER TIME 15

*L1ST DUMP

PROBLEM NAME:

SAMPLE PROBLEM - ENTERING DATA FR3M TERMINAL

INITIAL DATA

NUMBER OF RAW DATA PBINTS-~- (2
NUMBER OF BASE DATA POINTS=-= 15

FORECAST HORIZON-- 6
LEAD TIME-~ 3

TIME RAW DATA

l 1.01000

200000

3 302000

4 4000000

5 501000

6 6.00000

7 1.00000

8 200000

9 3.02000

10 2400000

1i 3.00000

12 4.00000

5/73

MS-98

0.10000E 02

DA45A

TCAST-9

TIME BASE SERIES RESIDUE
i O 1.01000
2 (V2 2.00000
3 Do 3.02000
4 3-.00000 1.00000
K] 3.00000 2.01000
6 3.00000 3.00000
T e 1.00000
8 0. 2.00000
9 0o " 3602000

10 100000 100000
i 1-00000 : 2.00000
12 1-00000 300000
13 3.00000 =3.00000
14 3.00000 =3.00000
15 3:00000 =3.00000

CYCLIC VALUES

PERI@D= 3

T CeTy
i 0999280
2 1007680
3 -20.015200

CyCLIC RESIDUES

TIME RESIDUE
101000
100072
1.01304
1.00824
1.01896
1.00128
1-.01648
1-01720
1.02952
10 1.02472
il 102544
ie 101776

O WOV D WD e

5/73 MS-99 DA45A

R

L

TCAST-10

F@RECAST DATA

USED ALPHA

020000

TIME RESIDUE Co
B 1.0180
9 i.0082
10 10142
i 1.0182
iz 10299
13 1.03295
14 10338
15 10277
16 10292
b7 10307
i8 10323

STATISTICAL INF@RMAT

Si= 101866
52= 1.0145S
S3= 101141
CEDI= 101866
CED2= 102278
CED3= 102375

C2= 000103
C3= 0.00124
RC3= 000006
LEAST SQUARES CURVE
Y= 20645+
MEAN= 3005
VARIANCEs= 2
EADY

5/73

TYP S™M
3
MPYSITE
(o)
20008
29987
1.9895
209928
4.0122
39995
5.0001
6.0017
0.98798
1.9888
2.9980

18N

FIT

Q0e055%X

e 167

ACTUAL ERR@R
(%)
2.0000-0.80594E-03
3.0200 0.21312E-01
2.0000 0.10523E-01
3.0000 0.72432E-02
4.0000-0.12168E-01

MS-100

DA45A

PLOT1

This FORTRAN subroutine plots a maximum of nine curves simultaneously.

INSTRUCTIONS

The calling sequences are:
CALL PLOT! (NCURVES, YMIN, YMAX, NPOS, XSTART, XDELTA, MARKS)
CALL PLOT (NCURVES, Y)

where

® PLOTI1 is called first to initialize the plot parameters, and PLOT is called
each time a line of PLOT is to be printed,

@ NCURVES is the number of curves to be simultaneously plotted,

® YMIN, YMA X are the minimum and maximum Y values,

o NPOS is the number of character positions available for the plot.

® XSTART is the starting X value of the plot. The first to PLOT transmits the
Y values corresponding to XSTART,

® XDELTA is the amount by which X is to be incremented on each call to PLOT,

® MARKS is the character*l array of the marks (such as *, +, .} to be used
in marking the Y values on each function plotted,

® Y is the array of Y values to be plotted at any particular call to PLOT,

SAMPLE PROBLEM

Plot the following curves:

Y1l o= 3e‘X/4
Y2 = SIN (7 X/2)
-X/4
Y3 = 3e / SIN(T X/2)
va = 36" X4
where
YMAX = 4,0, YMIN = -4,0,

and the number of curves, N = 4

5773 GP-6, 1 DA45A

PLOTI-2

010 CHARACTER*] MARKS(4)/' %', g0, wan, e v
020 DIMENSIBN Y(4)
030 N=g
Q40 YMAX= 4.
050 YMIN=-4,.
060 DX=.25
070 CaLL PLng(N'YMIN'YMAX:72!']07500X:MARKS)
080 D@ 100 J=1,50
090 X=J¥DX~2.
100 Y1) = 3% EXP(=e25%
X))
P10 Y(2) = SINC15705%X)
120 Y(3) = Y(I) % Y(2)
130 YC4) = «Y(1)
140 CALL PLOT(NsY)
150 100 C@NTINUE
160 STApP
170 END

READY

®*RUN %3PLATI=(CORE=19)

Y=AXIS MARKS ARE~--~
Y ! = “’4.000
Y 2 = =2+ 000
Y 3 & 0.

Y 4 = 2.000
¥ 5 = 4.000

5/73 GP-6,2 DA45A

pmm&%

Y-—-o—--------—--Y—---——o— —————— ‘--Y-OGOO-'uamB-n‘oon--Ymocnotwmocwnwnwmu’Y

~1¢750 + # X
+ # i
+ ¢ 1 &
$ # i *
$ + '] 1 &
3$ + # 1 w*
3 + # 1 &
$ » %
$ X # + &
$ i # & %*
07500 § X # L
$ 1 # @
$ 1 # e
$ 1 & <]
$ 1 # * *
$ * *
$ + # i &
$ + # I %
$e # I *®
$ # 1 +*
3.250 5+ # X &
$ + # 1 ®
$ + ¥ I k]
$ + %
s I #+ *
$ I + %
$ I + 4
3 1 4
$ i + @
$ I + %k
5750 $ X o4 %
$ + *
$ #+ X *®
#5+ 1 *®
¥y 3 1 *
$ 1 *
5 i *®
S+ 1 *
$# +1 ¥
$ hd &
8.250 $ X+ 4
$ 1 +% &
$ i + #
$ I <+ #
3 I o% #
$ I # #
$ [ewng
$ + %
#S+1
$+1 =

5/73 GP-6,3 DA45A

DRIVES

This FORTRAN program is the driver program used, in conjunction with the pre-
processor PREPRS, to run a translated lesson in the EXPER language (see Series G-200
Time -Sharing EXPER Language, Order No. BS05), It administers the lesson and writes the

students' responses on a specified file, EXPER is a Computer Assisted Instruction (CAI)

language,

INSTRUCTIONS

To use the DRIVES subroutine, write a four-line program as follows:

10%#RUN *; LIBRARY/DRIVES, R = (CORE=19)
20 CALL DRIVER ('userid/lesson;', 'userid/respon;'')

30 STOP
40 END
where
e userid/lesson is the catalog/file description of the file containing the
translated lesson,
® userid/respon is the catalog/file description of the student response file,

NOTE: Both file descriptions require a semicolon (;) to flag the end of the
description,

SAMPLE PROBLEM

A sample lesson was previously translated and stored in the file LESSON (see

PREPRS Sample Problem),

SAMPLE RUN

A student response file was created, The four-line driver program was written and

executed, Then the response file was listed.

5/73 ED-1 DA45A

DRIVES-2

REQEFRUN #33L. IBRARY/DRIVESs R=(CORE=19)

#20 CALL DRIVERCEXITIC/L13", “EXOTIC/RESPANS*)

*RUN

HELLO AND WELCOME T@ SERIES 60076000 TIME SHARINGe THILS SEQUENCE
BF PROBGRAMS IS5 DESIGNED TO HELP YOU LEARN TO WRITE INSTRUCTION=
Al MATERIALS IN THE EXPER COMPUTER LANGUAGE.

FIRST» LETS ESTABLISH THE METHGD BY WHICH WE WILL COMMUNICATE.
WHEN 1 WESH T3 HAVE YBU RESPAOND TO A QUESTIOGN UR STATEMENT

I WILL TYPE AN EQUAL SIGN (=) AND THEN STOP, WAITING FOR

YOUR RESPONSE.

LETS TRY IT. WHEN I TYPE AN EQUAL SIGN AND STOP, Y3U TYPE
YOUR NAME AND THEN PRESS THE RETURN KEY T@ LET ME KNOW THAT
YOU ARE FINISHEDe. (THE RETURN KEY 1S L@CATED AT THE FAR RIGHT
HAND SIDE @F THE KEYBOGARD.)

=HEBNEY WELL

G@OD. THAT®S HOW WE WILL COMMUNICATE.

*NE W

READY

®100-A

*110 WHICH STATEMENT BEST DESCRIBES THE CAPABILITIES

#120 GF EXPER?

130 Ae A LANGUAGE DESIGNED FBR SCIENTIFIC CALCULATIONS.
* 40 B- A LANGUAGE DESTGNED FOR BUSINESS APPLICATIONS.
*150 Co A LANGUAGE DESIGNED FO@R USE BY INSTRUCTORS

#160 WITH A NEED TO WRITE LESSONS T@ BE ADMINISTERED
w170 BY A COMPUTER.

=180 . Do ALL OF THE ABOVE.

#1908 INP

*2003M213C32
¥2103 JK2:t 13N

#220 WRENG» EXPER IS A CeA.le(COMPUTER ASSISTED INSTRUCTION)
#230 AUTHOR LANGUAGE. WITH THIS INFORMATION TRY THE QUESTION
w240 AGAIN.
€250
*2603JK25 A1 @883 AL
#270=-0N
#2680 THATS RIGHT. EXPER IS DESIGNED FOR EASY LESSON WRITING
#*290 WITH CAPABILITIES FOR MATCHING RESPBNSES AND BRANCHING
%300 ON THE VALUE OF SCORE COUNTERS.
#3108 eND
*SAVE SOURCE
DATA SAVED-<-SQ@URCE
“NEW
READY
#10%#RUN *3LIBRARY/PREPRSsR=(CORE=19)
#20 CALL PREPRE(EXOTIC/SBURCES"» “EXOTIC/LESSONS)
€30 ST@P
©40 END
#SAVE LESSON
DATA SAVED--LESSON
ERUN

100 100-A

270 117-BN
END PASS |

5/73 ED-2 DA45A

DRIVES-3 [}

wNEW

READY

wSAVE RESPF

DATA SAVED--RESPF

*JO##RUN %31, IBRARY/DRIVESsR=(CORE=19)

%20 CALL DRIVER(EXOTIC/LESSON3"» "EXOTIC/RESPF3'™)
%30 STOP

*RUN_
WHICH STATEMENT BEST DESCRIBES THE CAPABILITIES
@F EXPER?
Ao A LANGUAGE DESIGNED F@R SCIENTIFIC CALCULATIONS.
Bo A LANGUAGE DESIGNED FOR BUSINESS APPLICATIGNS.
Ce A LANGUAGE DESIGNED F@R USE BY INSTRUCTORS
WITH A NEED T2 WRITE LESSONS TU BE ADMINISTERED
BY A COMPUTER.
Do ALl @F THE ABOVE.
=i
Wﬁ@NGo EXPER IS A Cefels (COMPUTER ASSISTED INSTRUCTION?
AUTHOR LANGUAGE. WITH THIS INFORMATIAGN TRY THE QUESTION
AGAIN.

WHICH STATEMENT BEST DESCRIBES THE CAPABILITIES
QF EXPER?
Ao A LAMNGUAGE DESIGNED F@GR SCIENTIFIC CALCULATIONS.
Bs A LANGUAGE DESIGNED FOR BUSINESS APPLICATIONS.
Co A LANGUAGE DESIGNED FOR USE BY INSTRUCTIRS
WITH A NEED TO WRITE LESSONS TO BE ADMINISTERED
BY A COMPUTERS.
D. aLL OF THE ABOVE.
=C
THATS RIGHT. EXPER IS5 DESIGNED F@OR EASY LESSON WRITING
WITH CAPABILITIES FUR MATCHING RESPINSES AND BRANCHING
ON THE VALUE OF SCORE COUNTERS.

*

5/73 ED-2,1 DA45A

EXPERn-2

HELLO AND WELCOME T@ SERIES 600/6000 TIME SHARING. THIS SEGUENCE
OF PROGRAMS 1S DESIGNED TO HELP YOU LEARN TO WRITE INSTRUCTION-
AL MATERIALS IN THE EXPER COMPUTER LANGUAGE.

FIRST», LETS ESTABLISH THE METHOD BY WHICH WE WILL COMMUNICATE.
WHEN 1 WISH T@ HAVE YOU RESPOND TO A QUESTION OR STATEMENT.

I WILL TYPE AN EQUAL SIGN (=) AND THEN STOP, WAITING FOR

YOUR RESPONSE.

LETS TRY IT. WHEN I TYPE AN EQUAL SIGN AND STOP» YOU TYPE
YOUR NAME AND THEN PRESS THE RETURN KEY TO LET ME KNOW THAT
YOU ARE FINISMED. (THE RETURN KEY IS LOCATED AT THE FAR RIGHT
HAND SIDE OF THE KEYBOARD.)

= HONEYWELL

GO@D. THAT'S HOW WE WILL CCMMUNICATE.

5/73 ED-4

DA45A

PREPRS

This FORTRAN program is the preprocessor used, in conjunction with DRIVES, to proc-
ess and run the EXPER language (see Series G-200 Time-Sharing EXPER Language, Order

No., BS05). This subroutine translates an EXPER source program and saves the translated

lesson on a specified file, EXPER is a Computer Assisted Instruction (CAI) language.

INSTRUCTIONS
To use this subroutine, write a four-line program as follows:

10%#RUN *. LIBRARY/PREPRS,R = (CORE = 19}

20 CALL PREPRO (''userid/source;', "'userid/lesson:'")
30 STOP

40 END

where

Y userid/source is the catalog/file description of the file in which the
EXPER source program is saved.

® userid/lesson is the catalog/file description of the file which will receive
the translated lesson, '

NOTE: Both file descriptions require a semicolon (;) to flag the end of the

description,

SAMPLE PROBLEM

A sample lesson was written and saved in the file SOURCE. Translate this lesson

prior to execution of the driver (see DRIVES Sample Problem).

SAMPLE RUN

The translated lesson is saved in the file LLESSON,

5/73 ED-5 DA45A

PREPRS-2

%100 -A
#110 WHICH STATEMENT BEST DESCRIBES THE CAPABILITIES
#120 OF EXPER?

%130 A. A LANGUAGE DESIGNED FOR SCIENTIFIC CALCULA TIONS.
%140 B. A LANGUAGE DESIGNED FOR BUSINESS APPLICA TIONS.
%150 C. A LANGUAGE DESIGNED FOR USE BY INSTRUCTORS

%160 WITH A NEED TO WRITE LESSONS TO BE ADMINISTERED
%170 BY A COMPUTER,

180 D. ALL OF THE ABOVE.

%190: INP

%200:M21:C:

%210:JK2::ON:

#220 WRONG. EXPER IS A C.A.L (COMPUTER ASSISTED INSTRUCTION)
#230 AUTHOR LANGUAGE, WITH THIS INFORMATION TRY THE QUESTION
240 AGAIN,

%250

%260: JK2:A;@0@:A

*270-ON

7280 THATS RIGHT, EXPER IS DESIGNED FOR EASY LESSON WRITING
#2900 WITH CAPABILITIES FOR MATCHING RESPONSES AND BRANCHING
300 ON THE VALUE OF SCORE COUNTERS.

*310:%ND ’

*SAVE SOURCE

DATA SAVED -- SOURCE

*NEW

READY

F10MFRUN * LIBRARY /PREPRS, R=(CORE=19)

#20 CALL PREPRO ("EXOTIC/SOURCE;'", "EXOTIC/LESSON;")

*30 STOP

40 END

#SAVE LESSON

DATA SAVED -- LESSON

100 100-A
270 117-ON
END PASS 1

5/73

ED-6

DA45A

BLKJAK

This BASIC program is a simulated card game of Las Vegas-type blackjack,

INSTRUCTIONS

For instructions run the program.

SAMPLE SOLUTION

This is an actual demonstration game conducted briefly to show some of the points of

.

the game.
« RV

BLKJAK

THIS DEMONSTRATIGN SHOWS THE VERSATILITY @F TIME~
SHARING BY SIMULATING A GAME OF BLACKJACK. D@ Y@U NEED
INSTRUCTIBNS (1=YES, O0=NG)Y 21

HERE ARE THE LAS VEGAS RULES FOR PLAYING BLACKJACK: .

> WAGER: THE HOUSE LIMIT IS $500, SO TYPE IN A NUMBER
FrRaM 0 T@ 500, TG TERMINATE GAME, ENTER ZERG. -

> THE DEAL: 1 DEAL MYSELF 2 CARDS AND SHOW YOU ONE. THEN I
DEAL YQU Tw@ CARDS, AND ASK IF YOU WANT A HIT (ANOTHER
CARD). YBU HAVE SEVERAL O®TIONS DEPENDING OGN THE CARDS
YOU HOLD AND MY UP CARD:

* STAND - BY TYPING A ZERQ

* TAKE A HIT - BY TYPING A ONE

* (@ DAWN FOR DBUBLES - BY TYPING A TWo
#* SPLIT A PAIR - BY TYPING A THREE

> INSURANCE: IF MY UP CARD IS AN ACE» 1 WILL ASK IF Y@U
WANT INSURANCE. IF YOU D@ TYPE A ONE, BETTING ONE-HALF
@F YOUR WAGER THAT 1 D@ HAVE BLACKJACK. IF 1 D@, I PAY
2-T@=1 ON YQUR INSURANCE BET. YOU LOSE YBUR ORIGINAL WAGER
SINCE 1 HAVE BLACKJACK, SO WE ARE EVEN FOR THE HAND.
IF I DON'T HAVE BLACKJACK, YBU LOSE YOUR INSURANCE BET
AND THE GAME CONTINUES.

IF Y@l REFUSE INSURANCE (BY TYPING A ZERG) THE GAME
CONTINUES AS NORMAL.

> THE PLAY: WHEN YOU FINALLY STAND (BY TYPING A 7ZERQ)
I WILL DRAW CARDS UNTIL:®
1 HAVE AT LFEAST A HARD 17 (HARD MEANS THE TOTAL
DAES NOT INCLUDE AN ACE BEING CAUNTED AS 11)
*I HAVE A SBFT 18 (SOFT MEANS THE T@TAL INCLUDES AN
ACE COUNTED AS 11)
#«1 REACH A TeTAL OF 21
x! EXCEED 21 AND BUST

> I TEMS:
*1 PAY 1.5-T@-1 ON BLACKJACK
*«1 DON®T RECAGNIZE S5~CARDS-AND-UNDER
*YOU MAY DAUBLE DAWN ON A SPLIT HAND
*YOU DON°T LLOSE N A TIE HAND... WE PUSH

<c<(GOAD LUCK>>>

5 /73 DE-3

DA45A

BLKJAK-2

THE 600 IS THE DEALER AND GETS A BREAK AT 1945 HOURS. WHAT

TIME 1S IT NOW 2300

WAGER ?50
I SHOW ACE @F DIAMONDS
FIRST CARD IS JACK OF HEARTS

NEXT CARD IS 2 @F DIAMBNDS

INSURANCE ANYONE (TYPE 1 GR O) ?1

YBU WIN $ 50 ON YBUR INSURANCE BET**I HAVE BLACKJACK*# -
MY HOLE CARD IS JACK @F CLUBS

YOU'RE EVEN

WAGER 1?50

I SHoW 8 @F HEARTS
FIRST CARD IS KING @F HEARTS

NEXT CARD IS 9 @F DIAMONDS

HIT 70

YOUR TOTAL 18§ 19

MY HOLE CARD IS 6 8F CLUBS
1 DRAW 6 @F SPADES
MY TOTAL IS 20

YOQU'RE BEMIND § SO

WAGER ? 50

I SHAW 6 @F HEARTS
FIRST CARD IS OF HEARTS

NEXT CARD IS @F DIAMBNDS

HIT 21

NEXT CARD IS 3 @F CLUBS

HIT 71

NEXT CARD IS 5 OF DIAM@NDS

HIT 20

YOQUR TOTAL IS 17

MY HBLE CARD 1S QUEEN @F CLUBS
1 DRAW 7 @F HEARTS
1 BUSTED#**MY TOTAL IS 23

YOU'RE EVEN

W

WAGER ?50

I SHOW 5 @F CLUBS
FIRST CARD IS 10 9F HEARTS

NEXT CARD IS ACE @F HEARTS

& ko BL ACK J ACK ¥ #%k

MY H@LE CARD WAS 8 OF SPADES
YQU'RE AHEAD $ 15

WAGER ?0

READY
*

DE-4

DA45

MOONER [

This BASIC program simulates a lunar landing. The objective is to pilot the craft to a

soft landing in a series of thrusts or burns, which decrease the rate of descent,

METHOD

The user is the pilot of the lunar module and is trying to land the craft on the surface
of the moon. He inputs the amount of fuel to be burned each second of the descent, Printout

is figures showing altitude, vertical velocity, and amount of fuel remaining after each burn,

INSTRUCTIONS

The program uses two files, one of which contains complete instructions for a lunar
landing, A command within the program will produce this file listing, The program will

also produce, upon command, a description of '"How a Body Falls Onto the Moon, "

If you have not played this game before, type INS as the first command, and read the

detailed informaticn provided,

SAMPLE PROBLEM

QLD @R NEW-OLD MOONER
READY

£ 3

RUN

FOR INSTRUCTIONS TYPE °INS' AFTER ‘COMMAND=-=?° APPEARS.

FOR STANDARD GAME TYPE °'STA® AFTER ‘COMMAND-=~?° APPEARS.
COMMAND=-- 2STX
STX ‘
YOUR COMMAND IS ILLEGAL! LEGAL COMMANDS ARE:
MEW STA OLD INS EAR M@0 TAB
TYPE O AT NEXT COMMAND--? FOR EXPLANATION OF COMMANDS
@R A LEGAL C@MMAND TO CONTINUE
COMMAND-- 20
0

COMMAND EFFECT

INS ~ LISTS INSTRUCTIONS FOR QPERATING PROGRAM

STA =~ STANDARD INITIAL VALUES

NEW - NEW INITIAL VALUES

LD -~ PREVIOGUS INITIAL VALUES

EAR - EARTH LANDING

MO8 -~ MOBN LANDING

TAB ~ PRINTS TABLE OF HEIGHTS AND SPEEDS FUR FALLING BODY
COMMAND~~ 2S5TA
5TA

5/73 DE-4,1 DA45A

MOONER-2

STARTING HEIGHT: 500 FT

STARTING SPEED: 50 FT/SEC

FUEL SUPPLY: 120 UNITS

MAXIMUM BURNE® 30 UNITS/SEC

BURN T@ CANCEL GRAVITY @F MOON: S UNITS/SEC

CRASH TIMEs 7320508 SEC
CRASH SPEED: 86.60254 FT/SEC

BURN TIME HEIGHT SPEED FUEL
0 500 S0 120
1780858, 828,8
) i 4515 47 112
8
2 406 44 104
8
3 363.5 41 96
8
4 324 38 &8
8
5 28745 35 80
8
6 254 32 72
1o Ts 00757
7 223 30 65
7
8 194 28 58
7
9 167 26 51
7
10 142 24 44
7
11 119 22 37
76569656
12 975 21 31
6
13 77 20 25
6
14 5765 19 19
é
15 39 18 13
16262655
16 21e5S 17 7
6
17 5 16 |
[
1717 235 1583 OUT OF FUEL. FREE FALL STARTS NGW.
0
17.31 0 1656 0

PLEASE D@N'T LITTER.

5/73 DE-4, 2 DA45A

MOONER -3/

WANT AN@GTHER TRY WITH THIS DATA??-(YES @R N@)

TYES
BURN TIME HEIGHT SPEED FUEL
¢ 500 50 120
P0sBoBs 82808
- o i 451.5 a7 112
8
2 406 44 104
]
3 3635 a1 96
8
4 324 38 88
8
S 28765 35 80
8
& 254 32 12
1757215107
7 223 30 65
5
8 194 28 58
7
9 167 26 51
7
10 142 24 Q4
-
11 | 22 37
765 69 65606006
i2 9T 5 21 31
[
13 17 20 25
6
14 5765 i9 19
&
15 39 18 13
[
16 215 17 7
6
| S 16 i
g1
173 0 172 » 7

MAYBE Y@U CBULD GET A POOLED-RISK POLICY?

WANT ANOTHER TRY WITH THIS DATA??-(YES OR N@)
[l
COMMAND=-~ ?END

5/73 DE-4,3 DA45A

ACCESS fj

This FORTRAN callable, GMAP subroutine allows a time-sharing program to use the

time-sharing ACCESS system as a subroutine to perform functions relating to the file system,

INSTRUCTIONS
The calling sequence is:

CALL ACCESS (STRING, $SN)
or CALL ACCESS (STRING)

where STRING is an ASCII character string analogous to any short-form function response to
the ACCESS system, The string can be a quoted literal and must in all cases conform to one

of the following formats.

A
1 #H

1N oo e CRH

The system essentially deletes any leading #'s and replaces a trailing # with a carriage

return,

$SN represents an optional statement number to which control is transferred if the

requested function cannot, for some reason, be performed.

METHOD

The basic technique employed by the ACCESS subroutine is to create a temporary file
(**ACC), write the function description on this file, and invoke the ACCESS subsystem via a
DRL CALILSS. Upon invocation, the ACCESS subsystem determines the presence of *ACC,

obtains its input from it, and performs the indicated function. All keyboard input/output is

eliminated when the ACCESS subsystem is used in this manner, except for the "LC'" and

"LS" functions., These functions produce the requested teletypewriter ocutputs,

Blanks appearing anywhere in the function description string are ignored and can be

uscd {reely to improve readability,

If an error is detected and an error return ($SN) has not been specified, the subroutine
issues the following message and terminate execution:
ACCESS SUBR., ERROR WITH NO ALTERNATE RETURN SPECIFIED

No provision is made to determine the type of error,

5/73 UM-0,1 DA45A

ACCESS-2

SAMPLE PROBLEM

CALL ACCESS ("AF,JDOE/CATI1$ABC/CAT2$A0OK/FIL1, R#'", $100)
CALL ACCESS ("CF,/FILEX,B/10,20/,R, W, MODE/RAND/#")

SAMPLE SOLUTION

The following example illustrates the use of this routine.

#NEW
READY

*10 CALL ACCESSCLSs/IITe'")
%20 STOP

*30 END

#*RUN *=(ULIB)LIBRARY/APPLIBsR

FILE NAME-TTT
GRIGINATOR-EXQTIC

DATE CREATED-120172

DATE CHANGED-120472¢15.80)
LAST DATE ACCESSED-120472
MAX FILE SIZE~- 20 BL@CKS
CURRENT FILE SI1ZE- 1 BLOCKS
FILE TYPE-LINKED (ASCII)
DEVICE-DS4

GENERAL PERMISSIONS-NONE
SPECIFIC PERMISSI@N-

NONE

5/73 UM-0, 2 DA45A

APARAM |

This FORTRAN-callable GMAP subroutine enables a user program to determine if

execution is in time sharing or batch, and if the internal character code is ASCII or BCD,

srras

R

INSTRUCTIONS

The calling sequence for this routine is:

CALL APARAM (I, J)

where
® On input, if I=4, J is set to 0 if in batch mode, If in time sharing mode,
J is set to non-0,
® If I=5, Jis set to 0 if BCD, If ASCII, J is set to non-0,

The source version of this routine cannot be used directly, however, the object
version is contained in the random library APPLIB, A program can use this routine by

relerencing APPLIB as a user library when compiling an loading,

SAMPLE RUN

The following example illustrates the use of this routine,

*NEW
READY

*¥10 CALL. APARAM (4, 1)
*¥20 CALL APARAM(S»K)
#30 PRINT: Js K

#40 STOP

00 END
*RUN %= (ULIB)L IBRARY/APPL I8»R .
1 -1 i
. - :%
SRUN %= CUL 18, BCDIL IBRARYZAPPL 1B, R il
i 0 Ei

S5 UM-2, 1 DA4SA

APPLIB (APPLIB-R)f

The file APPLIB is a user's random library containing a number of FORTRAN-callable
subroutines, The specific user instructions for each of these routines is documented under
the name of the source file for that routine. The file APPLIB-R is the R* version of APPLIB

This file is required if APPLIB is to be modified, augmented, or recreated,

INSTRUCTIONS

If a FORTRAN program references a routine on APPLIB, then, when the programs are
bound to form the run file, the file APPLIB must be referenced as a user's random library,

In time sharing this is done by typing the RUN command using a format similar to that below:
RUN source = runfile (ULIB) LIBRARY/APPLIB, R
In batch processing it is done by including cards similar to the following:

$ LIBRARY AP
$ PRMFL AP,READ, RANDOM, LIBRARY/APPLIB
NOTE: Some of the routines contained in APPLIB use system modules that

may not yet be available if your system is not on the latest software
release., However, versions of the required system modules are
also included in APPLIB, The APPLIB versions of these routines
will be used if a special CALL statement is executed before executing
any of the routines requiring these system modules. These special

CALL statements indicate the software release version implemented
on your system. They take one of the following forms:

CALL SRB4("ABC")

CALL SRCS5("ABC")

CALL SRDb

CALL SRE7

CALL SRFS8

CALL SRAPn (n=0, 1, ...)

In SRB4 and SRC5, the parameter "ABC'" is used to set the internal ASCII/BCD flag,
The routines SRAPn are used for internal linking within APPLIB and to load some special

purpose functions,

ROUTINES IN APPLIB

Currently, the following routines are contained in APPLIB., The specific documentation
for each of these routines contains user instructions and examples. If the routine requires
system modules not available under earlier software releases, the minimum system release
level required to execute the routine without including a special CA LL SRxx is indicated

in parenthesis:

5/73 UM-2.3 DA45A

APPLIB-2

ACCESS

APARAM

ASCBCD

BCDASC

CALLSS

| MODIFYING APPLIB

(SR-D/6) DEFIL
KIN

UATOLA

The system maintenance group at a user site can modify the file APPLIB-R by submitting

a FILEDIT job similar to the following:

©“w & B

IDENT
USERID
FILEDIT
PRMFL
FILE
DATA
ENDEDIT
ENDCOPY
DATA

LIBRARY $ password
SOURCE,OBJECT, UPDATE, NONE
*R, READ, SEQ, LIBRARY/APPLIB-R
R%*, X1S, 2L

M#, , COPY

*C,, COPY

filedit directives

ENDCOPY
UTILITY
FILE
PRMFL
FUTIL
ENDJIOB

IN, XIR
R*, WRITE, SEQ, LIBRARY/APPLIB-R
IN, R*, RWD/IN, R*/, COPY/1F/

The file APPLIB can be recreated from the file APPLIB-R by submitting a job similar

to the following:

$

$
$
$
$
$

5/73

IDENT
USERID
PROGRAM
PRMFL
PRMFL
ENDJOB

LIBRARY $ password

RANLIB

R¥, READ, SEQ, LIBRARY/APPLIB-R
A4,READ/WRITE, RANDOM, LIBRARY/APPLIB

UM-2.4 DA45A

This FORTRAN-callable GMAP subroutine converts a character string from 9-bit

ASCII code to 6-bit BCD code, This subroutine may be used in batch or time-sharing mode,

INSTRUCTIONS
The calling sequence for this routine is:

CALL ASCBCD (IN,OT, ICOUNT)

where
® IN is the character to be converted,
® ICOUNT is the number of characters to be converted,
® OT is the character array where the converted characters are to

be stored.

IN is assumed to contain four characters per machine word, OT will be packed six charac-

ters per machine word.

The source version of this subroutine cannot be used directly; however, the object
version is contained in the random library APPLIB, A program can use this subroutine

by referencing APPLIB as a user library when compiling and loading.

The following chart displays the BCD-to-ASCII character translation,

5/73 UM-2,5 DA45A

ASCBCD-2

BCD-to-ASCII CHARACTER TRANSLATION

ASCII BCD ASCII BCL ASCII BCD ASCII BCD

000 32 & 040 B 20 ¥ 100 @ 14 ¢« 140 57\
001 32 & 041 ! 77 ! 101 A 21 A 141 & 20 A
002 32 & 042 " 76 102 B 22 E 142 b 22 b
003 32 & 043 # 13 & 103 C 23 C 143 ¢ 23 C
004 32 & 044 § 53 % 104 L 24 D 144 d 24 D
005 32 & 045 % T4 % 105 E 25 E 145 e 25 B
006 32 & 046 & 32 & 106 F 26 F 146 f 26 F
007 32 & 047 ¢ By ¢ 107 G 27 G 147 @ 27 G
Clo 32 & | 050 (35 (110 H 30 H 150 h 3¢ H
o1l 32 & 051) 35) IR 311 151 1 3101
012 32 & 052 % h4 % 12 J 41 J 152 41 J
013 32 & 053 + 50 + 113 K 42 K 153 k 42 K
o1 4 32 & 054 13, 114 L 43 L 154) 43 L
015 20 ¥ 0h - 52 - 115 M 44 M 155 1 44 N
016 32 & 056 . 33 . 116 N 45 N 156 n 45 N
017 32 & 57 / 51 7 17 0 46 U 157 o 46 L
020 32 & 060 © V0 U 120 P 47 F 160 47 p
021 32 & 061 1 o1 1 121 Q 50 161 @ 50 0
022 32 & 062 2 02 2 122 K 51 k 162 r 51 k
023 32 & 063 3 03 3 123 S 62 S 163 ¢ 62 S
024 32 & 064 4 04 4 124 1 63 1 164 t 65 1
025 32 & 065 5 05 5 125 U 64 U 165 U 64 U
026 32 & 066 6 06 6 126 V 65 V 166 v 65 vV
027 32 & 067 7 07 7 127 w 66 W 167 w 6¢ W
030 32 070 & 10 & 130 X 67 X 170 x 67 X
031 32 & 071 ¢ (A 131 Y 70 Y 171 y 70 Y
032 32 & 072 @ 15 3 132 Z 71 2 172 2 71 7
033 32 & 073 3 56 % 133 [12 173 (32 &
034 32 & 074 < 36 < 134 \ 37 \ 174 ¢ 32 &
035 32 & 01hH = 75 = 135 1 34) 175) 12 &
036 32 & 076 > 16 > 136 © 40 N 176 ~ 32 &
037 SEI 077 7 17 2 137 _ 20 & 177 DRl 32 &

SAMPLE RUN

The following run illustrates the use of the ASCBCD subroutine.

10 INTEGER K(3)

20 INTEGER L(2)

30 10 PRINT,"ENTER DECIMAL VALUE OF AN ASCII CHARACTER"

40 REAV»K(3)

50 IF(KC(3)eLT«0) STYP

60 CALL ASCBCD(K»L»12)

70 PRINT 20,L(2)

80 20 F@RMAT (" THE G@GCTAL VALUE OF THE BCD EQUIVALENT 1S *,02)
90 G& TO 10

100 END

5/73 UM-2.6 DA45A

ASCBCD-3
&
READY %
*RUN = (ULIB)YL IBRARY/APPLIBsR 0
ENTER DECIMAL VALUE @F AN ASCII CHARACTER %
=48
THE @CTAL VALUE @F THE BCD EQUIVALENT 1S 00 |
arggm DECIMAL VALUE OF AN ASCII CHARACTER ?§
= .
THE @CTAL VALUE OF THE BCD EQUIVALENT IS 07 ;@s
ENTER DECIMAL VALUE @F AN ASCII CHARACTER %
=07 |
THE @CTAL VALUE OF THE BCD EQUIVALENT IS 32 ij
ENTER DECIMAL VALUE @F AN ASCII CHARACTER g&i
==1 i
ASCII BCD ASCII BCD ASCII BCD ASCII BCD;%
000 NULL 17 2 040 ¥ 20 B 100 @ 14 @ 1407 17 2 ?fz
001 SOH 17 2 041 ! 77 1 101 A 21 a 141 a 2l a [
002 STX 17 2 042 " 76 " 102 B 22 b 142 b 22 b §
003 ETX 17 2 043 # 13 # 103 C 23 ¢ 143 ¢ 23 ¢ |l
004 EOT 17 044 $ 53 % 104 D 24 d 144 d 24 d |
005 ENG 17 045 % 74 % 105 E 25 e 145 e 25 e |
006 ACK 17 2 046 & 32 & 106 26 f 146 f 26 f E%
007 BELL 17 2 0477 57/ 107 G 27 g 147 g 27 g |
010 BSP 17 7 050 (35 110 H 30 h 150 h 30 h %
011 HT 17 7 051) 55) 111 1 3114 151 i 314 |
012 LF 17 052 % 54 112 7 41 j 152 j 41 §
013 VT 17 053 + 60 + 113 K 42 k 153 k 42 k
014 FED 17 1 054 , 73, 114 L 43 1 154 1 43 1 %
015 CR 177 055 - 52 - 115 M 44 m 155 m 44 mff
016 SO 17 2 056 . 33, 116 N 45 n 156 n 45 n %
017 SI 17 7 057 / 61 / 117 O 46 o 157 o 46 o f|
020 DLE 17 ? 060 0 00 0 120 P 47 p 160 p 47 p %
021 DC1 17 2 0611 011 121 Q 50 q 161 g 50 q |
022 DC2 17 ? 062 2 02 2 122 R 51 r 162 r 51 r ;@
023 DC3 17 7 063 3 03 3 123 S 62 s 163 s 62 s [l
024 DC4 172 064 4 04 4 124 T 63t 164 t 63t |
025 NAK 17 7 065 5 05 5 125 U 64 u 165 u 64 1
026 SYN 17 7 066 6 06 6 126 V 65 v 166 v 65 v |
027 ETB (77 067 7 07 7 127 W 66 w 167 w 66 w i
030 CAN 17 1 070 8 10 8 130 X 67 x 170 x 67 x 0§
031 EM 177 071 9 119 131y 70 y 171 y 70
032 SUB 177 072 : 15 : 132 Z 71 z 172 2 71
033 ESC 17 2 073 ; 56 ; 133 [12 [173§ 12 1
034 FS 17 ? 074 < 36 < 134 N\ 37\ 174 17 *
035 GS 177 075 = 75 = 135] 34] 175} 341 1
036 RS 17 ? 076 > 16 > 136 ~ 40 ~ 176~ 17 2 %
037 Us 17 7 077 2 17 2 137 72 177 DEL 17 ? s’zg
g
{
/T UM-2,7 DA45A

o

BCDASC [

This FORTRAN-callable GMAP subroutine converts a character string from six-bit

BCD code to nine-bit upper case ASCII code. This subroutine may be used in either time-

sharing or batch mode.

INSTRUCTIONS

The calling sequence for this routine is:
CALL BCDASC (IN,OT,ICOUNT) E%
where 5?
° IN is the character array to be converted.
® ICOUNT is the number of characters to be converted.
® OT is the character array where the converted characters are to be stored.

IN assumed to contain six characters per machine word, OT will be packed four characters

per machine word, IN and OT can be in the same array.

The source version of this subroutine cannot be used directly; however, the object

version is contained in the random library APPLIB, A program can use this subroutine by

referencing APPLIB as a user library when compiling and loading.

rermors

et e

The following chart displays the BCD-to-ASCII character translation.

6 -bit CHAR 9-bit 6 -bit CHAR 9-bit 6 -bit CHAR 9-bit

00 0 060 25 E 105 52 - 055

01 1 061 26 F 106 53 $ 044

02 2 062 27 G 107 54 052

03 3 063 30 H 110 55) 051

04 4 064 31 I 111 56 ; 073

05 5 065 32 & 046 57 ' 047 |

06 6 066 33 . 056 60 + 053 |

07 7 067 34] 135 61 / 057

10 8 070 35 (050 62 S 123§

i1 9 071 36 < 074 63 T 124

12 | 133 37 \ 134 64 U 125 %

13 # 043 40 t 136 65 v 126 |

14 @ 100 41 J 112 66 W 127§

15 : 072 42 K 113 67 X 130

16 > 076 43 L 114 70 Y 131

17 ? 077 44 M 115 71 z 132§

20) 040 45 N 116 72 - 137§

21 A 101 46 o 117 73 , 054 fl

22 B 102 47 P 120 74 % 045

23 C 103 50 Q 121 75 = 075 |

24 D 104 51 R 122 76 v 042 |}
77 ! 041 '

5/73 UM-2.9 DA45A

BCDASC-2

SAMPLI, RUN

The following run illustrates the use of this subroutine.

10 CHARACTER L*4(3)

20 INTEGER K(2)

30 10 PRINT,"ENTER DECIMAL VALUE OF A BCD CHARACTER"

40 READsK(2)

SO0 IF(K(2Y.LT-0) STOP

60 CALL BCDASC(Ksl»12)

70 PRINT 20sL(3),LC3)

80 20 FORMAT (' THE ASCII EQUIVALENT IS "sR1," (OCTAL=",33,")*)
90 G& T@ 10

100 END

READY

®RUN *= (ULIB)LIBRARY/APPLIBsR

ENTER DECIMAL VALUE OF A BCD CHARACTER
=12

THE ASCII EQUIVALENT IS @ (@CTAL=100)
ENTER DECIMAL VALUE @F A BCD CHARACTER
=49

THE ASCII EQUIVALENT IS / (@CTAL=0S5T)
ENTER DECIMAL VALUE OF A BCD CHARACTER

== 1

5/73 UM-2,10 DA45A

CALISS

This FORTRAN-callable GMAP subroutine calls a time sharing subsystem and will
return to the calling program. The called subsystem can be any subsystem known to the

TSS executive,

INSTRUCTIONS
The calling sequence for this routine is:

CALL CALILSS (STRING) or
CALL CALLSS (STRING, NAME)

where
® NAME is the four-character ASCII name of the subsystem to be called.
® STRING is the command sent to invoke the system in normal mode.

STRING is an ASCII character (constant or variable) that must contain
a carriage return or # as a terminating character. If the terminating
character is # it will be replaced by a carriage return when CALLSS
is called. If NAME is not supplied, the first four characters in
STRING are used for NAME,

For example, in the normal time-sharing mode, the following command line causes

the specific attributes of a file to be printed:

CATALOG TFILENAME

A FORTRAN program can cause the same printout to occur by using the following call:

CALL CALLSS ("CATALOG FILENAME{#")

The special string termination character, f, can be changed to any other character

by calling F'IXCR:
CALIL TFIXCR (CHAR)

where CHAR contains the octal equivalent of the new termination character, vight justified.

The source version of this routine cannot be used directly, however, the object
version is contained in the random library APPLIB, A program can use this routine by
referencing APPLIB as a user library when compiling and loading.

RESTRICTIONS

Nesting to more than two levels using CALLSS is not permitted. If the called time

sharing system is SYSTEM, then control will not be returned to the calling program,

5/73 UM-2,11 DA45A

CALLSS-2

SAMPLE RUN

The following example illustrates the use of this subroutine,

*NEW

READY

10 PRINTs"START"

#20 CALL CALLSS(STATF#')

#30 CALL CALLSS("REM@ APPLIB#')
%40 CALL CALLSS("STATF#'")

*50 PRINT»"ST@pP"

*60 STOP

START

LIST @F @PEN FILESs APPLIB SYsLiIB

LIST OF OPEN FILES: SYSLIB

STeP

V73 UM-2,12 DA45A

DCS

This FORTRAN subroutine transfers characters from one character string variable,
starting at a specified position, to a second character string variable, until'a delimiter

character is found,

INSTRUCTIONS
The calling sequence is:
CALL DCS(DEL, ND,MD, NPOINT, INSTR, MAXIN, OTSTR, MA XOT)
where the character variables DEL, INSTR and OTSTR are defined as:

CHARACTER DEL*1(ND), INSTR*MAXIN, OTSTR#*MA XOT

Starting at the NPOINT character of INSTR, the routine transfers characters into
OTSTR until MAXOT characters have been transferred or one of the delimiting characters
DEL is found, In either case, NPOINT will be advanced to the character following the next
delimiter. MD is set so that the delimiter causing termination of the character transfer

was DEL(MD); if MD = 0, then the end of INSTR was found before a delimiter,

SAMPLE RUN

The following example illustrates the use of this subroutine,

#*LIST

010 CHARACTER A%30, B*30

020 CHARACTER DEL¥1(2)/%,', 3y

030 PRINT» "ENTER A STRING'

040 READ> a

050 NP@INT =

060 10 B = v

070 CALL DCSCDEL»2sMDsNPOINT»A»30,8530)
080 PRINT», "NP@INT =", NPOINT

090 IF(MD <EQ. 0) G@ T@ 20

100 PRINT, “DELIMITER FUUND WAS *'» DEL (MD)
110 PRINT, B

120 GO T9 10

130 20 PRINT, "END QF INPUT LINE"

140 PRINT» B

150 STer

160 END

5/73 UM-10.1 DA45A

DCS-2

READY

#*RUN_#= (UL IB)LIBRARY/APPLIB,R
ENTER A STRING
="ABCD, EFGJ Hs 1JKLMN"
NP@INT = 6
DELIMITER FOUND WAS »
ABCD

NPOINT = 10
DELIMITER FEUND WAS 3
EFG

NP@INT = 12
DELIMITER FOUND WAS »

H

NPOINT = 31
END @F INPUT LINE

TJKLMN

&

5/73 UM-10,2 DA45A

DEFILJ

This FORTRAN-callable GMAP subroutine creates a named temporary file and accesse

it in the user's available file table.

INSTRUCTIONS
The calling sequence is:

CALL DEFIL (NAME, LINKS, MODE, ISTAT)

where
® NAME is a character *8 variable containing the ASCII name of the
temporary file to be created.
® LINKS is the size in links at which the file is to be created, If

MODE=0, a sequential file is created. If MODE#0, a random file
is created, ISTAT contains the status indication shown below:

ISTAT = 0 Successful
3 No room in AFT
4 Temporary file not available
5 Duplicate file name
6 No room in PAT

NOTE: This routine does not make the proper linkages to allow
FORTRAN IO to read from or write to the file, The
source version of this routine cannot be used directly;
however, the object version is contained in the random
library APPLIB., A program can use this routine by
referencing APPILIB as a user library when compiling
and loading,

SAMPLE RUN

The following example illustrates the use of this routine,

*NEW
READY

#10 CALL DEFIL("TEST "»1,0,ISTAT)
¥20 PRINT,"ISTAT=", ISTAT

%30 ST@P

*40 END

«STATF

LIST @F QPEN FILES: NONE

*RUN *= (ULIB)LIBRARY/APPLIB,R
ISTAT= 0

*STATF

LIST @F O@PEN FILESs APPLIB TEST

S5/T0 UM -10, 3 DA4SHA

GMAP (GMAP-SQOR)

This FORTRAN program provides a time sharing interface to the GMAP assembler,
The file GMAP-SOR is the source version of the program, The file GMAP is the H* version,

the execution of which is initiated using the command loader.

METHOD

The program passes a time sharing file to the batch GMAP assembler, When the
batch portion of the program has terminated, the P* and C* files written by the assembler

are available to the time sharing user.

INSTRUCTIONS

The execution of this program should be invoked using the command loader by typing

a command line similar to:

LIBRARY/GMAP or

LIBRARY/GMAP: option = value, option = value, etc,

The legal options and their possible values follow, If any option is not specified, the

default value is used,

SQURCE = filename Allows the user to specify the GMAP source file to be
assembled, This file should be in standard CARDIN
format, If first line formatting information is not
contained in the file, the user will be asked for label
disposition and tab characters and settings. If a
SOURCE file is not specified, the current file will
be assumed,

Pre=filename Allows the user to specify the P file to be used for
the assembly listing, If the file is not already in
the AFT, a temporary file by the specified name will
be created and used, If a P¥ filename is not speci-
fied, the filename PSTAR will be assumed.

Ca=filename Allows the user to specify the C# file to be used for
the object deck., If the file is not already in the AFT,
a temporary file by the specified name will be created
and used. If a C* filename is not specified, the filename
, CSTAR will be assumed, ‘
rrue |

RENMOVICS= l S \LSI‘I Sets indicators to remove temporary working files when
IS i

no longer needed. The default value is TRULE,

URGC - nn Sets the batch urgency to the value specified (1-40).
40 is the default value.

CORE Seots the batch core limits to the value indicated (in KJ,
The default value is 24,

5773 UM-12.1 DA45SA

GMAP-SOR-2

The following sample commands illustrate the correct use of the option fields:
LIBRARY/GMAP:
LIBRARY/GMAP:SOURCE=PROGI
LIBRARY/GMAP:SOURCE=PROG2, C*=OBJ
LIBRARY/GMAP:C#=0OBJ, REMOVE=FALSE
LIBRARY/GMAP:URGC=5, CORE=18

SAMPLE RUN

The following printout illustrates the use of this program to perform a GMAP assembly

as though the GMAP assembler were a time-sharing routine.

*NEW
READY

*1Q##NIRM

208 TTLITEST GMAP PROGRAM
#*30:LBLSTEST

*40 3§ SYMDEF $ ENTER
#50ENTERSNULL

*603 EAXO2=4s DU
*70¢LDA3-5,0
*808 TRAS 55 AL
*308 END

*L 1 BRARY/ GMAP 3

*STATF

LIST @F OPEN FILES: PSTAR CSTAR

#SCAN_PSTAR
FORM? GMAP
00! ERRGRS

EDIT?YES
? ERR@RS
X 000000 000004 6200 03 000 S EAXO 34,DU 60 #0021

21227 01 02-21-73 10.602 TEST GMAP PROGRAM PAGE 1 #0002
PREFACE #0003
PR@GRAM BREAK 6 #0004
CaMMBN LENGTH O #0005
v CAUNT BITS 5 #0006
PRIMARY SYMDEF ENTRY #0007
ENTER O #0008
#0009
SEC@NDARY SYMDEF ENTRY #0010
#0011
BLUCK LENGTH #0012
SYMREF #0013
END @F BINARY CARD TESTO00! #0014

5/73 UM-12,2 DA45A

#0015
2122T 01 02-21-T3 10.602 TEST GMAP PRUGRAM PAGE 2 #0016
} TTL TEST GMAP PROGRAM 20 #0017
2 LBL TEST 30 #0018
3 SYMDEF ENTER 40 #0019
000000 4 ENTER NULL 50 #0020
X 000000 000004 6200 03 000 S EAXO =4»DU 60 #0021
00000t 777773 2350 10 000 6 LDA ~-5,0 70 #0022
000002 000005 7100 05 000 7 TRA 5S»,AL 80 #0023
#0024
ERR@R LINKAGE #0025
000003 000000000000 000 #0026
000004 254563255120 000 #0027
END @F BINARY CARD TESTQ002 #0028
8 END 90 #0029
6 1S THE NEXT AVAILABLE LJOCATION. #0030
GMAP VERSIGN/ASSEMBLY DATES JMPA 0915727091472 JMPB 0531727070872
JUMPC 0727727072772 #0031 :
THERE WERE 1| WARNING FLAGS IN THE ABOVE ASSEMBLY #0032
@nN PAGE N@. #0033
2 #0034
#0035
2122T 01 02-21=73 10.602 TEST GMAP PROGRAM PAGE 3 #0036
@CTAL SYMBOL REFERENCES BY ALTER N@. #0037
0 ENTER 4 3 4 #0038
#% 194 LIMITS NEEDED FOR THIS ASSEMBLY. #0039
L& F

TDONE

*SCAN CSTAR

CODE?

EDIT?2YES

s GBJECT G10.602022173TEST00000000 #0001
$ DKEND TEST00030000 #0002

E@F

7 DBMNE

5/73 UM-12,3

DA45A

St

KIN

This FORTRAN-callable, GMAP subroutine reads the last line again from the terminal

input buffer,

INSTRUCTIONS
The calling sequence for this routine is:

CALL KIN (STRING, ICOUNT)

where
® STRING contains the last line in the terminal input buffer,

® ICOUNT is the number of characters stored in STRING, If ICOUNT=C,
the buffer was empty. STRING should be defined as an ASCII character
variable large enough to hold the last input line,

The source version of this routine cannot be used directly; however, the object version

is contained in the random library APPLIB. A program can use this routine by referencing

APPLIB as a user library when compiling and loading,

SAMPLE PROBLEM

The command loader leaves data following a colon (:) on the command line which

invoked it in the input buffer. Write a sample program which, when invoked by the command

loader, will retrieve any information following the colon:

SAMPLE RUN

*NEW .

*10 CHARACTER STRING*72

*20 CALL KINC(STRINGs ICOUNT)
*30 IFCICOUNT)»20»

*40 PRINT,''DATA RETRIEVED 15"
#50 PRINT,STRING |

«60 STOP

%70 20 PRINT»"BUFFER WAS EMPTY"
«80 ST@P T
*90 END

*RUN_ *=TEST(NOG3,»UL1B)ILIBRARY/APPLIB,R
*/TEST s SAMPLE DATA

DATA RETRIEVED 1S

SAMPLE DATA

5/73 UM-12,5 DA45A

UATOLA f

These FORTRAN-callable, GMAP subroutines convert an ASCII character string from
upper to lower case or from lower to upper case. These subroutines may be used in either

time sharing or batch modes.

INSTRUCTIONS
The calling sequence for converting to lower case is:
CALL UATOLA (STRING, ICOUNT)
The calling sequence for converting to upper case is:

CALL LATOUA (STRING, ICOUTN)

where
® ICOUNT is the number of characters to be converted. The subroutine
assumes the characters are packed four per machine word,
® STRING, on input, is the character string to be converted, and on output,

is the converted character string.

The source version of these subroutines cannot be used directly, however the object
version is contained in the random library APPLIB, A program can use any of these sub-

routines by referencing APPLIB as a user library when compiling and loading.

SAMPLE RUN
The following example illustrates the use of the UATOLA subroutines.

wNE W

READY

%10 CHARACTER A*12/°"AABBCCDD12¢)"/
*20 PRINT2A_

%30 CALL UATOLACA»12)

%40 PRINTsA

¥50 CALL LATOUACAs12)

*60 PRINT»A

*70_ST@P

*80 END

#RUN_ k= (UL IBILIBRARY/APPLIB, R
AABBCCDD12 ()
AABBCCDDI2C)
AABBCCDDIZ2 ()

5/73 UM-23 DA45A

e

